Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2007.08663
Cited By
TUDataset: A collection of benchmark datasets for learning with graphs
16 July 2020
Christopher Morris
Nils M. Kriege
Franka Bause
Kristian Kersting
Petra Mutzel
Marion Neumann
Re-assign community
ArXiv
PDF
HTML
Papers citing
"TUDataset: A collection of benchmark datasets for learning with graphs"
48 / 148 papers shown
Title
Interactive Visual Pattern Search on Graph Data via Graph Representation Learning
Huan Song
Zeng Dai
Panpan Xu
Liu Ren
NAI
GNN
33
10
0
18 Feb 2022
More is Better (Mostly): On the Backdoor Attacks in Federated Graph Neural Networks
Jing Xu
Rui Wang
Stefanos Koffas
K. Liang
S. Picek
FedML
AAML
33
25
0
07 Feb 2022
Differentially Private Graph Classification with GNNs
Tamara T. Mueller
Johannes C. Paetzold
Chinmay Prabhakar
Dmitrii Usynin
Daniel Rueckert
Georgios Kaissis
47
18
0
05 Feb 2022
Graph Representation Learning via Aggregation Enhancement
Maxim Fishman
Chaim Baskin
Evgenii Zheltonozhskii
Almog David
Ron Banner
A. Mendelson
24
0
0
30 Jan 2022
LAGOON: An Analysis Tool for Open Source Communities
Sourya Dey
Walt Woods
13
2
0
26 Jan 2022
Cross-Domain Few-Shot Graph Classification
Kaveh Hassani
13
31
0
20 Jan 2022
Robust Contrastive Learning against Noisy Views
Ching-Yao Chuang
R. Devon Hjelm
Xin Wang
Vibhav Vineet
Neel Joshi
Antonio Torralba
Stefanie Jegelka
Ya-heng Song
NoLa
13
68
0
12 Jan 2022
Bootstrapping Informative Graph Augmentation via A Meta Learning Approach
Hang Gao
Jiangmeng Li
Jingyao Wang
Hui Xiong
Gang Hua
Changwen Zheng
21
11
0
11 Jan 2022
Causal Attention for Interpretable and Generalizable Graph Classification
Yongduo Sui
Xiang Wang
Jiancan Wu
Min-Bin Lin
Xiangnan He
Tat-Seng Chua
CML
OOD
17
152
0
30 Dec 2021
Multi-scale Graph Convolutional Networks with Self-Attention
Zhilong Xiong
Jia Cai
GNN
43
2
0
04 Dec 2021
AutoHEnsGNN: Winning Solution to AutoGraph Challenge for KDD Cup 2020
Jin Xu
Mingjian Chen
Jianqiang Huang
Xingyuan Tang
Ke Hu
Jian Li
Jia Cheng
Jun Lei
20
2
0
25 Nov 2021
Towards Traffic Scene Description: The Semantic Scene Graph
Maximilian Zipfl
J. Marius Zöllner
3DV
11
20
0
19 Nov 2021
Learning on Random Balls is Sufficient for Estimating (Some) Graph Parameters
Takanori Maehara
Hoang NT
41
2
0
05 Nov 2021
Graph Filtration Kernels
Till Hendrik Schulz
Pascal Welke
Stefanie Wrobel
24
12
0
22 Oct 2021
Understanding Pooling in Graph Neural Networks
Daniele Grattarola
Daniele Zambon
F. Bianchi
Cesare Alippi
GNN
FAtt
AI4CE
30
90
0
11 Oct 2021
From Stars to Subgraphs: Uplifting Any GNN with Local Structure Awareness
Lingxiao Zhao
Wei Jin
L. Akoglu
Neil Shah
GNN
24
160
0
07 Oct 2021
Equivariant Subgraph Aggregation Networks
Beatrice Bevilacqua
Fabrizio Frasca
Derek Lim
Balasubramaniam Srinivasan
Chen Cai
G. Balamurugan
M. Bronstein
Haggai Maron
53
175
0
06 Oct 2021
Permute Me Softly: Learning Soft Permutations for Graph Representations
Giannis Nikolentzos
George Dasoulas
Michalis Vazirgiannis
GNN
36
9
0
05 Oct 2021
Reconstruction for Powerful Graph Representations
Leonardo Cotta
Christopher Morris
Bruno Ribeiro
AI4CE
130
78
0
01 Oct 2021
Edge but not Least: Cross-View Graph Pooling
Xiaowei Zhou
Jie Yin
Ivor W. Tsang
42
2
0
24 Sep 2021
A Hard Label Black-box Adversarial Attack Against Graph Neural Networks
Jiaming Mu
Binghui Wang
Qi Li
Kun Sun
Mingwei Xu
Zhuotao Liu
AAML
23
33
0
21 Aug 2021
Large-scale graph representation learning with very deep GNNs and self-supervision
Ravichandra Addanki
Peter W. Battaglia
David Budden
Andreea Deac
Jonathan Godwin
...
Wai Lok Sibon Li
Alvaro Sanchez-Gonzalez
Jacklynn Stott
S. Thakoor
Petar Velivcković
SSL
AI4CE
27
25
0
20 Jul 2021
Hierarchical graph neural nets can capture long-range interactions
Ladislav Rampášek
Guy Wolf
21
12
0
15 Jul 2021
On Positional and Structural Node Features for Graph Neural Networks on Non-attributed Graphs
Hejie Cui
Zijie Lu
Pan Li
Carl Yang
15
80
0
03 Jul 2021
Prototypical Graph Contrastive Learning
Shuai Lin
Pan Zhou
Zi-Yuan Hu
Shuojia Wang
Ruihui Zhao
Yefeng Zheng
Liang Lin
Eric P. Xing
Xiaodan Liang
24
86
0
17 Jun 2021
Learning to Pool in Graph Neural Networks for Extrapolation
Jihoon Ko
Taehyung Kwon
Kijung Shin
Juho Lee
21
6
0
11 Jun 2021
Graph Contrastive Learning Automated
Yuning You
Tianlong Chen
Yang Shen
Zhangyang Wang
24
447
0
10 Jun 2021
Breaking the Limits of Message Passing Graph Neural Networks
M. Balcilar
Pierre Héroux
Benoit Gaüzère
Pascal Vasseur
Sébastien Adam
P. Honeine
18
121
0
08 Jun 2021
Graph2Graph Learning with Conditional Autoregressive Models
Guan Wang
F. Lauze
Aasa Feragen
CML
GNN
AI4CE
33
2
0
06 Jun 2021
Explainability-based Backdoor Attacks Against Graph Neural Networks
Jing Xu
Minhui Xue
Xue
S. Picek
23
74
0
08 Apr 2021
Learning Graph Representation by Aggregating Subgraphs via Mutual Information Maximization
Chenguang Wang
Ziwen Liu
SSL
28
17
0
24 Mar 2021
DIG: A Turnkey Library for Diving into Graph Deep Learning Research
Meng Liu
Youzhi Luo
Limei Wang
Yaochen Xie
Haonan Yuan
...
Haoran Liu
Cong Fu
Bora Oztekin
Xuan Zhang
Shuiwang Ji
GNN
24
118
0
23 Mar 2021
Size-Invariant Graph Representations for Graph Classification Extrapolations
Beatrice Bevilacqua
Yangze Zhou
Bruno Ribeiro
OOD
35
108
0
08 Mar 2021
Weisfeiler and Lehman Go Topological: Message Passing Simplicial Networks
Cristian Bodnar
Fabrizio Frasca
Yu Guang Wang
N. Otter
Guido Montúfar
Pietro Lió
M. Bronstein
36
247
0
04 Mar 2021
Accurate Learning of Graph Representations with Graph Multiset Pooling
Jinheon Baek
Minki Kang
Sung Ju Hwang
33
172
0
23 Feb 2021
Self-Supervised Learning of Graph Neural Networks: A Unified Review
Yaochen Xie
Zhao Xu
Jingtun Zhang
Zhengyang Wang
Shuiwang Ji
SSL
24
324
0
22 Feb 2021
Topological Graph Neural Networks
Max Horn
E. Brouwer
Michael Moor
Yves Moreau
Bastian Alexander Rieck
Karsten M. Borgwardt
AI4CE
25
90
0
15 Feb 2021
On Using Classification Datasets to Evaluate Graph-Level Outlier Detection: Peculiar Observations and New Insights
Lingxiao Zhao
L. Akoglu
30
65
0
23 Dec 2020
Learning Graphons via Structured Gromov-Wasserstein Barycenters
Hongteng Xu
Dixin Luo
Lawrence Carin
H. Zha
46
28
0
10 Dec 2020
LCS Graph Kernel Based on Wasserstein Distance in Longest Common Subsequence Metric Space
Jianming Huang
Zhongxi Fang
Hiroyuki Kasai
23
19
0
07 Dec 2020
Graph Kernels: State-of-the-Art and Future Challenges
Karsten M. Borgwardt
Elisabetta Ghisu
Felipe Llinares-López
Leslie O’Bray
Bastian Alexander Rieck
AI4TS
31
101
0
07 Nov 2020
From Local Structures to Size Generalization in Graph Neural Networks
Gilad Yehudai
Ethan Fetaya
E. Meirom
Gal Chechik
Haggai Maron
GNN
AI4CE
169
123
0
17 Oct 2020
Contrastive Learning with Hard Negative Samples
Joshua Robinson
Ching-Yao Chuang
S. Sra
Stefanie Jegelka
SSL
66
759
0
09 Oct 2020
A Survey of Privacy Attacks in Machine Learning
M. Rigaki
Sebastian Garcia
PILM
AAML
33
213
0
15 Jul 2020
Deep Graph Library: A Graph-Centric, Highly-Performant Package for Graph Neural Networks
Minjie Wang
Da Zheng
Zihao Ye
Quan Gan
Mufei Li
...
J. Zhao
Haotong Zhang
Alex Smola
Jinyang Li
Zheng-Wei Zhang
AI4CE
GNN
197
746
0
03 Sep 2019
Representation Learning on Graphs with Jumping Knowledge Networks
Keyulu Xu
Chengtao Li
Yonglong Tian
Tomohiro Sonobe
Ken-ichi Kawarabayashi
Stefanie Jegelka
GNN
267
1,945
0
09 Jun 2018
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
224
1,340
0
12 Feb 2018
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
251
1,811
0
25 Nov 2016
Previous
1
2
3