Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2007.08473
Cited By
v1
v2
v3 (latest)
Certifiably Adversarially Robust Detection of Out-of-Distribution Data
16 July 2020
Julian Bitterwolf
Alexander Meinke
Matthias Hein
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Certifiably Adversarially Robust Detection of Out-of-Distribution Data"
19 / 19 papers shown
Title
Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks
Francesco Croce
Matthias Hein
AAML
227
1,858
0
03 Mar 2020
Towards neural networks that provably know when they don't know
Alexander Meinke
Matthias Hein
OODD
77
141
0
26 Sep 2019
Sparse and Imperceivable Adversarial Attacks
Francesco Croce
Matthias Hein
AAML
97
199
0
11 Sep 2019
Towards Stable and Efficient Training of Verifiably Robust Neural Networks
Huan Zhang
Hongge Chen
Chaowei Xiao
Sven Gowal
Robert Stanforth
Yue Liu
Duane S. Boning
Cho-Jui Hsieh
AAML
80
349
0
14 Jun 2019
Certified Adversarial Robustness via Randomized Smoothing
Jeremy M. Cohen
Elan Rosenfeld
J. Zico Kolter
AAML
158
2,051
0
08 Feb 2019
Why ReLU networks yield high-confidence predictions far away from the training data and how to mitigate the problem
Matthias Hein
Maksym Andriushchenko
Julian Bitterwolf
OODD
170
559
0
13 Dec 2018
Deep Anomaly Detection with Outlier Exposure
Dan Hendrycks
Mantas Mazeika
Thomas G. Dietterich
OODD
183
1,487
0
11 Dec 2018
Generalisation in humans and deep neural networks
Robert Geirhos
Carlos R. Medina Temme
Jonas Rauber
Heiko H. Schutt
Matthias Bethge
Felix Wichmann
OOD
107
609
0
27 Aug 2018
A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks
Kimin Lee
Kibok Lee
Honglak Lee
Jinwoo Shin
OODD
192
2,062
0
10 Jul 2018
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
243
3,194
0
01 Feb 2018
Training Confidence-calibrated Classifiers for Detecting Out-of-Distribution Samples
Kimin Lee
Honglak Lee
Kibok Lee
Jinwoo Shin
OODD
120
882
0
26 Nov 2017
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
285
8,920
0
25 Aug 2017
Evasion Attacks against Machine Learning at Test Time
Battista Biggio
Igino Corona
Davide Maiorca
B. Nelson
Nedim Srndic
Pavel Laskov
Giorgio Giacinto
Fabio Roli
AAML
160
2,159
0
21 Aug 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
315
12,131
0
19 Jun 2017
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods
Nicholas Carlini
D. Wagner
AAML
131
1,864
0
20 May 2017
A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks
Dan Hendrycks
Kevin Gimpel
UQCV
168
3,472
0
07 Oct 2016
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
268
8,583
0
16 Aug 2016
Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images
Anh Totti Nguyen
J. Yosinski
Jeff Clune
AAML
171
3,274
0
05 Dec 2014
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
282
14,963
1
21 Dec 2013
1