Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2007.07584
Cited By
On quantitative aspects of model interpretability
15 July 2020
An-phi Nguyen
María Rodríguez Martínez
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On quantitative aspects of model interpretability"
25 / 25 papers shown
Title
A constraints-based approach to fully interpretable neural networks for detecting learner behaviors
Juan D. Pinto
Luc Paquette
48
0
0
10 Apr 2025
Axiomatic Explainer Globalness via Optimal Transport
Davin Hill
Josh Bone
A. Masoomi
Max Torop
Jennifer Dy
105
1
0
13 Mar 2025
Navigating the Maze of Explainable AI: A Systematic Approach to Evaluating Methods and Metrics
Lukas Klein
Carsten T. Lüth
U. Schlegel
Till J. Bungert
Mennatallah El-Assady
Paul F. Jäger
XAI
ELM
42
3
0
03 Jan 2025
Reconciling Privacy and Explainability in High-Stakes: A Systematic Inquiry
Supriya Manna
Niladri Sett
168
0
0
30 Dec 2024
A Fresh Look at Sanity Checks for Saliency Maps
Anna Hedström
Leander Weber
Sebastian Lapuschkin
Marina M.-C. Höhne
FAtt
LRM
59
5
0
03 May 2024
Global Counterfactual Directions
Bartlomiej Sobieski
P. Biecek
DiffM
58
5
0
18 Apr 2024
Towards Evaluating Explanations of Vision Transformers for Medical Imaging
Piotr Komorowski
Hubert Baniecki
P. Biecek
MedIm
38
27
0
12 Apr 2023
Less is More: The Influence of Pruning on the Explainability of CNNs
David Weber
F. Merkle
Pascal Schöttle
Stephan Schlögl
Martin Nocker
FAtt
34
1
0
17 Feb 2023
The Meta-Evaluation Problem in Explainable AI: Identifying Reliable Estimators with MetaQuantus
Anna Hedström
P. Bommer
Kristoffer K. Wickstrom
Wojciech Samek
Sebastian Lapuschkin
Marina M.-C. Höhne
37
21
0
14 Feb 2023
What Makes a Good Explanation?: A Harmonized View of Properties of Explanations
Zixi Chen
Varshini Subhash
Marton Havasi
Weiwei Pan
Finale Doshi-Velez
XAI
FAtt
39
18
0
10 Nov 2022
RESHAPE: Explaining Accounting Anomalies in Financial Statement Audits by enhancing SHapley Additive exPlanations
Ricardo Müller
Marco Schreyer
Timur Sattarov
Damian Borth
AAML
MLAU
35
7
0
19 Sep 2022
Evaluating the Explainers: Black-Box Explainable Machine Learning for Student Success Prediction in MOOCs
Vinitra Swamy
Bahar Radmehr
Natasa Krco
Mirko Marras
Tanja Kaser
FAtt
ELM
13
40
0
01 Jul 2022
Interpretation Quality Score for Measuring the Quality of interpretability methods
Sean Xie
Soroush Vosoughi
Saeed Hassanpour
XAI
19
5
0
24 May 2022
Enriching Artificial Intelligence Explanations with Knowledge Fragments
Jože M. Rožanec
Elena Trajkova
I. Novalija
Patrik Zajec
K. Kenda
B. Fortuna
Dunja Mladenić
28
9
0
12 Apr 2022
Explainability in Process Outcome Prediction: Guidelines to Obtain Interpretable and Faithful Models
Alexander Stevens
Johannes De Smedt
XAI
FaML
17
12
0
30 Mar 2022
XAI in the context of Predictive Process Monitoring: Too much to Reveal
Ghada Elkhawaga
Mervat Abuelkheir
M. Reichert
20
1
0
16 Feb 2022
Quantus: An Explainable AI Toolkit for Responsible Evaluation of Neural Network Explanations and Beyond
Anna Hedström
Leander Weber
Dilyara Bareeva
Daniel G. Krakowczyk
Franz Motzkus
Wojciech Samek
Sebastian Lapuschkin
Marina M.-C. Höhne
XAI
ELM
21
169
0
14 Feb 2022
A Survey on Methods and Metrics for the Assessment of Explainability under the Proposed AI Act
Francesco Sovrano
Salvatore Sapienza
M. Palmirani
F. Vitali
14
17
0
21 Oct 2021
An Objective Metric for Explainable AI: How and Why to Estimate the Degree of Explainability
Francesco Sovrano
F. Vitali
37
30
0
11 Sep 2021
Synthetic Benchmarks for Scientific Research in Explainable Machine Learning
Yang Liu
Sujay Khandagale
Colin White
Willie Neiswanger
37
65
0
23 Jun 2021
A Framework for Evaluating Post Hoc Feature-Additive Explainers
Zachariah Carmichael
Walter J. Scheirer
FAtt
46
4
0
15 Jun 2021
Pitfalls of Explainable ML: An Industry Perspective
Sahil Verma
Aditya Lahiri
John P. Dickerson
Su-In Lee
XAI
16
9
0
14 Jun 2021
Quantifying Explainers of Graph Neural Networks in Computational Pathology
Guillaume Jaume
Pushpak Pati
Behzad Bozorgtabar
Antonio Foncubierta-Rodríguez
Florinda Feroce
A. Anniciello
T. Rau
Jean-Philippe Thiran
M. Gabrani
O. Goksel
FAtt
26
76
0
25 Nov 2020
Exemplary Natural Images Explain CNN Activations Better than State-of-the-Art Feature Visualization
Judy Borowski
Roland S. Zimmermann
Judith Schepers
Robert Geirhos
Thomas S. A. Wallis
Matthias Bethge
Wieland Brendel
FAtt
44
7
0
23 Oct 2020
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
257
3,696
0
28 Feb 2017
1