ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.07442
  4. Cited By
A Method for Representing Periodic Functions and Enforcing Exactly
  Periodic Boundary Conditions with Deep Neural Networks

A Method for Representing Periodic Functions and Enforcing Exactly Periodic Boundary Conditions with Deep Neural Networks

15 July 2020
S. Dong
Naxian Ni
ArXivPDFHTML

Papers citing "A Method for Representing Periodic Functions and Enforcing Exactly Periodic Boundary Conditions with Deep Neural Networks"

27 / 27 papers shown
Title
Is the end of Insight in Sight ?
Is the end of Insight in Sight ?
J. Tucny
M. Durve
S. Succi
74
0
0
07 May 2025
Perception-Informed Neural Networks: Beyond Physics-Informed Neural Networks
Perception-Informed Neural Networks: Beyond Physics-Informed Neural Networks
Mehran Mazandarani
Marzieh Najariyan
PINN
AI4CE
37
0
0
02 May 2025
EquiNO: A Physics-Informed Neural Operator for Multiscale Simulations
EquiNO: A Physics-Informed Neural Operator for Multiscale Simulations
Hamidreza Eivazi
Jendrik-Alexander Tröger
Stefan H. A. Wittek
Stefan Hartmann
Andreas Rausch
AI4CE
51
0
0
27 Mar 2025
Transport-Embedded Neural Architecture: Redefining the Landscape of
  physics aware neural models in fluid mechanics
Transport-Embedded Neural Architecture: Redefining the Landscape of physics aware neural models in fluid mechanics
Amirmahdi Jafari
38
0
0
05 Oct 2024
Extremization to Fine Tune Physics Informed Neural Networks for Solving
  Boundary Value Problems
Extremization to Fine Tune Physics Informed Neural Networks for Solving Boundary Value Problems
A. Thiruthummal
Sergiy Shelyag
Eun-Jin Kim
38
2
0
07 Jun 2024
Unveiling the optimization process of Physics Informed Neural Networks:
  How accurate and competitive can PINNs be?
Unveiling the optimization process of Physics Informed Neural Networks: How accurate and competitive can PINNs be?
Jorge F. Urbán
P. Stefanou
José A. Pons
PINN
50
6
0
07 May 2024
BiLO: Bilevel Local Operator Learning for PDE inverse problems
BiLO: Bilevel Local Operator Learning for PDE inverse problems
Ray Zirui Zhang
Xiaohui Xie
John S. Lowengrub
73
1
0
27 Apr 2024
Macroscopic auxiliary asymptotic preserving neural networks for the
  linear radiative transfer equations
Macroscopic auxiliary asymptotic preserving neural networks for the linear radiative transfer equations
Hongyan Li
Song Jiang
Wenjun Sun
Liwei Xu
Guanyu Zhou
45
2
0
04 Mar 2024
Exact Enforcement of Temporal Continuity in Sequential Physics-Informed
  Neural Networks
Exact Enforcement of Temporal Continuity in Sequential Physics-Informed Neural Networks
Pratanu Roy
Stephen T Castonguay
PINN
AI4TS
57
9
0
15 Feb 2024
Approximation of Solution Operators for High-dimensional PDEs
Approximation of Solution Operators for High-dimensional PDEs
Nathan Gaby
Xiaojing Ye
32
0
0
18 Jan 2024
Residual-based attention and connection to information bottleneck theory
  in PINNs
Residual-based attention and connection to information bottleneck theory in PINNs
Sokratis J. Anagnostopoulos
Juan Diego Toscano
Nikos Stergiopulos
George Karniadakis
40
20
0
01 Jul 2023
Error Analysis of Physics-Informed Neural Networks for Approximating
  Dynamic PDEs of Second Order in Time
Error Analysis of Physics-Informed Neural Networks for Approximating Dynamic PDEs of Second Order in Time
Y. Qian
Yongchao Zhang
Yuanfei Huang
S. Dong
PINN
31
1
0
22 Mar 2023
A Dimension-Augmented Physics-Informed Neural Network (DaPINN) with High
  Level Accuracy and Efficiency
A Dimension-Augmented Physics-Informed Neural Network (DaPINN) with High Level Accuracy and Efficiency
Weilong Guan
Kai-Ping Yang
Yinsheng Chen
Zhong Guan
PINN
AI4CE
20
12
0
19 Oct 2022
Certified machine learning: Rigorous a posteriori error bounds for PDE
  defined PINNs
Certified machine learning: Rigorous a posteriori error bounds for PDE defined PINNs
Birgit Hillebrecht
B. Unger
PINN
23
5
0
07 Oct 2022
Neural Networks Based on Power Method and Inverse Power Method for
  Solving Linear Eigenvalue Problems
Neural Networks Based on Power Method and Inverse Power Method for Solving Linear Eigenvalue Problems
Qihong Yang
Yangtao Deng
Yu Yang
Qiaolin He
Shiquan Zhang
24
13
0
22 Sep 2022
A comprehensive study of non-adaptive and residual-based adaptive
  sampling for physics-informed neural networks
A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks
Chen-Chun Wu
Min Zhu
Qinyan Tan
Yadhu Kartha
Lu Lu
37
357
0
21 Jul 2022
Lagrangian PINNs: A causality-conforming solution to failure modes of
  physics-informed neural networks
Lagrangian PINNs: A causality-conforming solution to failure modes of physics-informed neural networks
R. Mojgani
Maciej Balajewicz
Pedram Hassanzadeh
PINN
33
45
0
05 May 2022
Numerical Computation of Partial Differential Equations by Hidden-Layer
  Concatenated Extreme Learning Machine
Numerical Computation of Partial Differential Equations by Hidden-Layer Concatenated Extreme Learning Machine
Naxian Ni
S. Dong
34
20
0
24 Apr 2022
Improved Training of Physics-Informed Neural Networks with Model
  Ensembles
Improved Training of Physics-Informed Neural Networks with Model Ensembles
Katsiaryna Haitsiukevich
Alexander Ilin
PINN
52
23
0
11 Apr 2022
Respecting causality is all you need for training physics-informed
  neural networks
Respecting causality is all you need for training physics-informed neural networks
Sizhuang He
Shyam Sankaran
P. Perdikaris
PINN
CML
AI4CE
58
199
0
14 Mar 2022
Numerical Approximation of Partial Differential Equations by a Variable
  Projection Method with Artificial Neural Networks
Numerical Approximation of Partial Differential Equations by a Variable Projection Method with Artificial Neural Networks
S. Dong
Jielin Yang
50
17
0
24 Jan 2022
Gradient-enhanced physics-informed neural networks for forward and
  inverse PDE problems
Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems
Jeremy Yu
Lu Lu
Xuhui Meng
George Karniadakis
PINN
AI4CE
38
452
0
01 Nov 2021
A Modified Batch Intrinsic Plasticity Method for Pre-training the Random
  Coefficients of Extreme Learning Machines
A Modified Batch Intrinsic Plasticity Method for Pre-training the Random Coefficients of Extreme Learning Machines
S. Dong
Zongwei Li
33
29
0
14 Mar 2021
Physics-informed neural networks with hard constraints for inverse
  design
Physics-informed neural networks with hard constraints for inverse design
Lu Lu
R. Pestourie
Wenjie Yao
Zhicheng Wang
F. Verdugo
Steven G. Johnson
PINN
50
497
0
09 Feb 2021
A Priori Generalization Analysis of the Deep Ritz Method for Solving
  High Dimensional Elliptic Equations
A Priori Generalization Analysis of the Deep Ritz Method for Solving High Dimensional Elliptic Equations
Jianfeng Lu
Yulong Lu
Min Wang
36
37
0
05 Jan 2021
Local Extreme Learning Machines and Domain Decomposition for Solving
  Linear and Nonlinear Partial Differential Equations
Local Extreme Learning Machines and Domain Decomposition for Solving Linear and Nonlinear Partial Differential Equations
S. Dong
Zongwei Li
36
164
0
04 Dec 2020
An Energy Approach to the Solution of Partial Differential Equations in
  Computational Mechanics via Machine Learning: Concepts, Implementation and
  Applications
An Energy Approach to the Solution of Partial Differential Equations in Computational Mechanics via Machine Learning: Concepts, Implementation and Applications
E. Samaniego
C. Anitescu
S. Goswami
Vien Minh Nguyen-Thanh
Hongwei Guo
Khader M. Hamdia
Timon Rabczuk
X. Zhuang
PINN
AI4CE
159
1,349
0
27 Aug 2019
1