ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.07115
  4. Cited By
Estimation of Thermodynamic Observables in Lattice Field Theories with
  Deep Generative Models

Estimation of Thermodynamic Observables in Lattice Field Theories with Deep Generative Models

14 July 2020
K. Nicoli
Christopher J. Anders
L. Funcke
T. Hartung
K. Jansen
Pan Kessel
Shinichi Nakajima
Paolo Stornati
    AI4CE
ArXivPDFHTML

Papers citing "Estimation of Thermodynamic Observables in Lattice Field Theories with Deep Generative Models"

2 / 2 papers shown
Title
Aspects of scaling and scalability for flow-based sampling of lattice
  QCD
Aspects of scaling and scalability for flow-based sampling of lattice QCD
Ryan Abbott
M. S. Albergo
Aleksandar Botev
D. Boyda
Kyle Cranmer
...
Ali Razavi
Danilo Jimenez Rezende
F. Romero-López
P. Shanahan
Julian M. Urban
39
33
0
14 Nov 2022
Machine Learning Trivializing Maps: A First Step Towards Understanding
  How Flow-Based Samplers Scale Up
Machine Learning Trivializing Maps: A First Step Towards Understanding How Flow-Based Samplers Scale Up
L. Debbio
Joe Marsh Rossney
Michael Wilson
16
6
0
31 Dec 2021
1