ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.05566
  4. Cited By
Contrastive Training for Improved Out-of-Distribution Detection

Contrastive Training for Improved Out-of-Distribution Detection

10 July 2020
Jim Winkens
Rudy Bunel
Abhijit Guha Roy
Robert Stanforth
Vivek Natarajan
J. Ledsam
Patricia MacWilliams
Pushmeet Kohli
Alan Karthikesalingam
Simon A. A. Kohl
taylan. cemgil
S. M. Ali Eslami
Olaf Ronneberger
    OODD
ArXivPDFHTML

Papers citing "Contrastive Training for Improved Out-of-Distribution Detection"

50 / 51 papers shown
Title
HALO: Robust Out-of-Distribution Detection via Joint Optimisation
HALO: Robust Out-of-Distribution Detection via Joint Optimisation
Hugo Lyons Keenan
S. Erfani
Christopher Leckie
OODD
212
0
0
27 Feb 2025
Out-of-Distribution Detection using Synthetic Data Generation
Out-of-Distribution Detection using Synthetic Data Generation
Momin Abbas
Muneeza Azmat
R. Horesh
Mikhail Yurochkin
47
1
0
05 Feb 2025
Self-supervised Benchmark Lottery on ImageNet: Do Marginal Improvements Translate to Improvements on Similar Datasets?
Utku Ozbulak
Esla Timothy Anzaku
Solha Kang
W. D. Neve
J. Vankerschaver
52
0
0
28 Jan 2025
Deep Active Learning in the Open World
Deep Active Learning in the Open World
Tian Xie
Jifan Zhang
Haoyue Bai
R. Nowak
VLM
151
1
0
10 Nov 2024
A Comprehensive Review of Machine Learning Advances on Data Change: A
  Cross-Field Perspective
A Comprehensive Review of Machine Learning Advances on Data Change: A Cross-Field Perspective
Jeng-Lin Li
Chih-Fan Hsu
Ming-Ching Chang
Wei-Chao Chen
OOD
44
2
0
20 Feb 2024
Contrastive Instruction Tuning
Contrastive Instruction Tuning
Tianyi Yan
Fei Wang
James Y. Huang
Wenxuan Zhou
Fan Yin
Aram Galstyan
Wenpeng Yin
Muhao Chen
ALM
23
5
0
17 Feb 2024
LEVI: Generalizable Fine-tuning via Layer-wise Ensemble of Different
  Views
LEVI: Generalizable Fine-tuning via Layer-wise Ensemble of Different Views
Yuji Roh
Qingyun Liu
Huan Gui
Zhe Yuan
Yujin Tang
...
Liang Liu
Shuchao Bi
Lichan Hong
Ed H. Chi
Zhe Zhao
43
1
0
07 Feb 2024
NNG-Mix: Improving Semi-supervised Anomaly Detection with Pseudo-anomaly
  Generation
NNG-Mix: Improving Semi-supervised Anomaly Detection with Pseudo-anomaly Generation
Hao Dong
Gaëtan Frusque
Yue Zhao
Eleni Chatzi
Olga Fink
AAML
35
5
0
20 Nov 2023
SGOOD: Substructure-enhanced Graph-Level Out-of-Distribution Detection
SGOOD: Substructure-enhanced Graph-Level Out-of-Distribution Detection
Zhihao Ding
Jieming Shi
Shiqi Shen
Xuequn Shang
Jiannong Cao
Zhipeng Wang
Zhi Gong
OODD
OOD
37
4
0
16 Oct 2023
Unmasking the Chameleons: A Benchmark for Out-of-Distribution Detection
  in Medical Tabular Data
Unmasking the Chameleons: A Benchmark for Out-of-Distribution Detection in Medical Tabular Data
Mohammad Azizmalayeri
Ameen Abu-Hanna
Dirk Kraft
OOD
28
5
0
28 Sep 2023
Environment-biased Feature Ranking for Novelty Detection Robustness
Stefan Smeu
Elena Burceanu
Emanuela Haller
Andrei Liviu Nicolicioiu
OOD
39
0
0
21 Sep 2023
SupEuclid: Extremely Simple, High Quality OoD Detection with Supervised
  Contrastive Learning and Euclidean Distance
SupEuclid: Extremely Simple, High Quality OoD Detection with Supervised Contrastive Learning and Euclidean Distance
J. Haas
OODD
12
0
0
21 Aug 2023
Simplifying Open-Set Video Domain Adaptation with Contrastive Learning
Simplifying Open-Set Video Domain Adaptation with Contrastive Learning
Giacomo Zara
Victor G. Turrisi da Costa
Subhankar Roy
Paolo Rota
Elisa Ricci
41
1
0
09 Jan 2023
GEDI: GEnerative and DIscriminative Training for Self-Supervised
  Learning
GEDI: GEnerative and DIscriminative Training for Self-Supervised Learning
Emanuele Sansone
Robin Manhaeve
SSL
20
9
0
27 Dec 2022
A Call to Reflect on Evaluation Practices for Failure Detection in Image
  Classification
A Call to Reflect on Evaluation Practices for Failure Detection in Image Classification
Paul F. Jaeger
Carsten T. Lüth
Lukas Klein
Till J. Bungert
UQCV
26
35
0
28 Nov 2022
Beyond Mahalanobis-Based Scores for Textual OOD Detection
Beyond Mahalanobis-Based Scores for Textual OOD Detection
Pierre Colombo
Eduardo Dadalto Camara Gomes
Guillaume Staerman
Nathan Noiry
Pablo Piantanida
OODD
52
5
0
24 Nov 2022
Delving into Out-of-Distribution Detection with Vision-Language
  Representations
Delving into Out-of-Distribution Detection with Vision-Language Representations
Yifei Ming
Ziyan Cai
Jiuxiang Gu
Yiyou Sun
W. Li
Yixuan Li
VLM
OODD
47
157
0
24 Nov 2022
Contrastive Classification and Representation Learning with
  Probabilistic Interpretation
Contrastive Classification and Representation Learning with Probabilistic Interpretation
Rahaf Aljundi
Yash J. Patel
Milan Šulc
Daniel Olmeda
N. Chumerin
SSL
31
5
0
07 Nov 2022
Exploring Predictive Uncertainty and Calibration in NLP: A Study on the
  Impact of Method & Data Scarcity
Exploring Predictive Uncertainty and Calibration in NLP: A Study on the Impact of Method & Data Scarcity
Dennis Ulmer
J. Frellsen
Christian Hardmeier
189
22
0
20 Oct 2022
Enhancing Out-of-Distribution Detection in Natural Language
  Understanding via Implicit Layer Ensemble
Enhancing Out-of-Distribution Detection in Natural Language Understanding via Implicit Layer Ensemble
Hyunsoo Cho
Choonghyun Park
Jaewoo Kang
Kang Min Yoo
Taeuk Kim
Sang-goo Lee
OODD
30
8
0
20 Oct 2022
Out-of-Distribution Detection and Selective Generation for Conditional
  Language Models
Out-of-Distribution Detection and Selective Generation for Conditional Language Models
Jie Jessie Ren
Jiaming Luo
Yao-Min Zhao
Kundan Krishna
Mohammad Saleh
Balaji Lakshminarayanan
Peter J. Liu
OODD
72
94
0
30 Sep 2022
Saliency Guided Adversarial Training for Learning Generalizable Features
  with Applications to Medical Imaging Classification System
Saliency Guided Adversarial Training for Learning Generalizable Features with Applications to Medical Imaging Classification System
Xin Li
Yao Qiang
Chengyin Li
Sijia Liu
D. Zhu
OOD
MedIm
31
4
0
09 Sep 2022
Probing Contextual Diversity for Dense Out-of-Distribution Detection
Probing Contextual Diversity for Dense Out-of-Distribution Detection
Silvio Galesso
M. A. Bravo
Mehdi Naouar
Thomas Brox
21
4
0
30 Aug 2022
The Value of Out-of-Distribution Data
The Value of Out-of-Distribution Data
Ashwin De Silva
Rahul Ramesh
Carey E. Priebe
Pratik Chaudhari
Joshua T. Vogelstein
OODD
23
11
0
23 Aug 2022
Exploiting Inter-Sample Affinity for Knowability-Aware Universal Domain
  Adaptation
Exploiting Inter-Sample Affinity for Knowability-Aware Universal Domain Adaptation
Yifan Wang
Lin Zhang
Ran Song
Hongliang Li
Lin Ma
Wei Emma Zhang
24
6
0
19 Jul 2022
Breaking Down Out-of-Distribution Detection: Many Methods Based on OOD
  Training Data Estimate a Combination of the Same Core Quantities
Breaking Down Out-of-Distribution Detection: Many Methods Based on OOD Training Data Estimate a Combination of the Same Core Quantities
Julian Bitterwolf
Alexander Meinke
Maximilian Augustin
Matthias Hein
OODD
18
25
0
20 Jun 2022
Out-of-Distribution Detection with Deep Nearest Neighbors
Out-of-Distribution Detection with Deep Nearest Neighbors
Yiyou Sun
Yifei Ming
Xiaojin Zhu
Yixuan Li
OODD
19
488
0
13 Apr 2022
Training a Helpful and Harmless Assistant with Reinforcement Learning
  from Human Feedback
Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback
Yuntao Bai
Andy Jones
Kamal Ndousse
Amanda Askell
Anna Chen
...
Jack Clark
Sam McCandlish
C. Olah
Benjamin Mann
Jared Kaplan
72
2,330
0
12 Apr 2022
Self-Supervised Losses for One-Class Textual Anomaly Detection
Self-Supervised Losses for One-Class Textual Anomaly Detection
Kimberly T. Mai
Toby O. Davies
Lewis D. Griffin
12
7
0
12 Apr 2022
No Shifted Augmentations (NSA): compact distributions for robust
  self-supervised Anomaly Detection
No Shifted Augmentations (NSA): compact distributions for robust self-supervised Anomaly Detection
Mohamed Yousef
Marcel R. Ackermann
Unmesh Kurup
Tom E. Bishop
OODD
OOD
40
3
0
19 Mar 2022
How to Exploit Hyperspherical Embeddings for Out-of-Distribution
  Detection?
How to Exploit Hyperspherical Embeddings for Out-of-Distribution Detection?
Yifei Ming
Yiyou Sun
Ousmane Amadou Dia
Yixuan Li
OODD
26
95
0
08 Mar 2022
Model-agnostic out-of-distribution detection using combined statistical
  tests
Model-agnostic out-of-distribution detection using combined statistical tests
Federico Bergamin
Pierre-Alexandre Mattei
Jakob Drachmann Havtorn
Hugo Senetaire
Hugo Schmutz
Lars Maaløe
Søren Hauberg
J. Frellsen
OODD
24
18
0
02 Mar 2022
Ranking Info Noise Contrastive Estimation: Boosting Contrastive Learning
  via Ranked Positives
Ranking Info Noise Contrastive Estimation: Boosting Contrastive Learning via Ranked Positives
David T. Hoffmann
Nadine Behrmann
Juergen Gall
Thomas Brox
M. Noroozi
38
43
0
27 Jan 2022
Out-of-distribution Detection with Boundary Aware Learning
Out-of-distribution Detection with Boundary Aware Learning
Sen Pei
Xin Zhang
Bin Fan
Gaofeng Meng
OODD
21
8
0
22 Dec 2021
Decomposing Representations for Deterministic Uncertainty Estimation
Decomposing Representations for Deterministic Uncertainty Estimation
Haiwen Huang
Joost R. van Amersfoort
Y. Gal
UQCV
OOD
UD
24
1
0
01 Dec 2021
Statistical Perspectives on Reliability of Artificial Intelligence
  Systems
Statistical Perspectives on Reliability of Artificial Intelligence Systems
Yili Hong
J. Lian
Li Xu
Jie Min
Yueyao Wang
Laura J. Freeman
Xinwei Deng
25
30
0
09 Nov 2021
Exploring Covariate and Concept Shift for Detection and Calibration of
  Out-of-Distribution Data
Exploring Covariate and Concept Shift for Detection and Calibration of Out-of-Distribution Data
Junjiao Tian
Yen-Change Hsu
Yilin Shen
Hongxia Jin
Z. Kira
OODD
19
6
0
28 Oct 2021
Graph Posterior Network: Bayesian Predictive Uncertainty for Node
  Classification
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification
Maximilian Stadler
Bertrand Charpentier
Simon Geisler
Daniel Zügner
Stephan Günnemann
UQCV
BDL
41
80
0
26 Oct 2021
On the Impact of Spurious Correlation for Out-of-distribution Detection
On the Impact of Spurious Correlation for Out-of-distribution Detection
Yifei Ming
Hang Yin
Yixuan Li
OODD
156
74
0
12 Sep 2021
On the Importance of Regularisation & Auxiliary Information in OOD
  Detection
On the Importance of Regularisation & Auxiliary Information in OOD Detection
John Mitros
Brian Mac Namee
21
2
0
15 Jul 2021
Graceful Degradation and Related Fields
Graceful Degradation and Related Fields
J. Dymond
31
4
0
21 Jun 2021
A Simple Fix to Mahalanobis Distance for Improving Near-OOD Detection
A Simple Fix to Mahalanobis Distance for Improving Near-OOD Detection
Jie Jessie Ren
Stanislav Fort
J. Liu
Abhijit Guha Roy
Shreyas Padhy
Balaji Lakshminarayanan
UQCV
33
216
0
16 Jun 2021
Shifting Transformation Learning for Out-of-Distribution Detection
Shifting Transformation Learning for Out-of-Distribution Detection
Sina Mohseni
Arash Vahdat
J. Yadawa
OODD
13
7
0
07 Jun 2021
OpenMatch: Open-set Consistency Regularization for Semi-supervised
  Learning with Outliers
OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers
Kuniaki Saito
Donghyun Kim
Kate Saenko
34
63
0
28 May 2021
Do We Really Need to Learn Representations from In-domain Data for
  Outlier Detection?
Do We Really Need to Learn Representations from In-domain Data for Outlier Detection?
Zhisheng Xiao
Qing Yan
Y. Amit
OOD
UQCV
20
18
0
19 May 2021
OVANet: One-vs-All Network for Universal Domain Adaptation
OVANet: One-vs-All Network for Universal Domain Adaptation
Kuniaki Saito
Kate Saenko
33
141
0
07 Apr 2021
SSD: A Unified Framework for Self-Supervised Outlier Detection
SSD: A Unified Framework for Self-Supervised Outlier Detection
Vikash Sehwag
M. Chiang
Prateek Mittal
OODD
31
330
0
22 Mar 2021
A statistical framework for efficient out of distribution detection in
  deep neural networks
A statistical framework for efficient out of distribution detection in deep neural networks
Matan Haroush
Tzviel Frostig
R. Heller
Daniel Soudry
OODD
25
37
0
25 Feb 2021
Deep Deterministic Uncertainty: A Simple Baseline
Deep Deterministic Uncertainty: A Simple Baseline
Jishnu Mukhoti
Andreas Kirsch
Joost R. van Amersfoort
Philip Torr
Y. Gal
UD
UQCV
PER
BDL
24
145
0
23 Feb 2021
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,661
0
05 Dec 2016
12
Next