ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.05558
  4. Cited By
The Computational Limits of Deep Learning

The Computational Limits of Deep Learning

10 July 2020
Neil C. Thompson
Kristjan Greenewald
Keeheon Lee
Gabriel F. Manso
    VLM
ArXivPDFHTML

Papers citing "The Computational Limits of Deep Learning"

20 / 70 papers shown
Title
PositNN: Training Deep Neural Networks with Mixed Low-Precision Posit
PositNN: Training Deep Neural Networks with Mixed Low-Precision Posit
Gonçalo Raposo
P. Tomás
Nuno Roma
MQ
27
19
0
30 Apr 2021
An optical neural network using less than 1 photon per multiplication
An optical neural network using less than 1 photon per multiplication
Tianyu Wang
Shifan Ma
Logan G. Wright
Tatsuhiro Onodera
Brian C. Richard
Peter L. McMahon
48
177
0
27 Apr 2021
Carbon Emissions and Large Neural Network Training
Carbon Emissions and Large Neural Network Training
David A. Patterson
Joseph E. Gonzalez
Quoc V. Le
Chen Liang
Lluís-Miquel Munguía
D. Rothchild
David R. So
Maud Texier
J. Dean
AI4CE
253
645
0
21 Apr 2021
Efficient and Generic 1D Dilated Convolution Layer for Deep Learning
Efficient and Generic 1D Dilated Convolution Layer for Deep Learning
Narendra Chaudhary
Sanchit Misra
Dhiraj D. Kalamkar
A. Heinecke
E. Georganas
Barukh Ziv
Menachem Adelman
Bharat Kaul
29
9
0
16 Apr 2021
Avalanche: an End-to-End Library for Continual Learning
Avalanche: an End-to-End Library for Continual Learning
Vincenzo Lomonaco
Lorenzo Pellegrini
Andrea Cossu
Antonio Carta
G. Graffieti
...
Christopher Kanan
Joost van de Weijer
Tinne Tuytelaars
D. Bacciu
Davide Maltoni
BDL
AI4TS
28
181
0
01 Apr 2021
Online Deterministic Annealing for Classification and Clustering
Online Deterministic Annealing for Classification and Clustering
Christos N. Mavridis
John S. Baras
ODL
22
17
0
11 Feb 2021
BERT Goes Shopping: Comparing Distributional Models for Product
  Representations
BERT Goes Shopping: Comparing Distributional Models for Product Representations
Federico Bianchi
Bingqing Yu
Jacopo Tagliabue
22
15
0
17 Dec 2020
Bringing AI To Edge: From Deep Learning's Perspective
Bringing AI To Edge: From Deep Learning's Perspective
Di Liu
Hao Kong
Xiangzhong Luo
Weichen Liu
Ravi Subramaniam
52
116
0
25 Nov 2020
The De-democratization of AI: Deep Learning and the Compute Divide in
  Artificial Intelligence Research
The De-democratization of AI: Deep Learning and the Compute Divide in Artificial Intelligence Research
N. Ahmed
Muntasir Wahed
25
106
0
22 Oct 2020
The Hardware Lottery
The Hardware Lottery
Sara Hooker
27
203
0
14 Sep 2020
AIPerf: Automated machine learning as an AI-HPC benchmark
AIPerf: Automated machine learning as an AI-HPC benchmark
Zhixiang Ren
Yongheng Liu
Tianhui Shi
Lei Xie
Yue Zhou
Jidong Zhai
Youhui Zhang
Yunquan Zhang
Wenguang Chen
27
22
0
17 Aug 2020
Measuring the Algorithmic Efficiency of Neural Networks
Measuring the Algorithmic Efficiency of Neural Networks
Danny Hernandez
Tom B. Brown
241
94
0
08 May 2020
Meta Pseudo Labels
Meta Pseudo Labels
Hieu H. Pham
Zihang Dai
Qizhe Xie
Minh-Thang Luong
Quoc V. Le
VLM
262
656
0
23 Mar 2020
What is the State of Neural Network Pruning?
What is the State of Neural Network Pruning?
Davis W. Blalock
Jose Javier Gonzalez Ortiz
Jonathan Frankle
John Guttag
191
1,027
0
06 Mar 2020
A Neuromorphic Proto-Object Based Dynamic Visual Saliency Model with an
  FPGA Implementation
A Neuromorphic Proto-Object Based Dynamic Visual Saliency Model with an FPGA Implementation
J. Molin
Chetan Singh Thakur
R. Etienne-Cummings
E. Niebur
21
9
0
27 Feb 2020
Scaling Laws for Neural Language Models
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
264
4,489
0
23 Jan 2020
Entropic Out-of-Distribution Detection
Entropic Out-of-Distribution Detection
David Macêdo
T. I. Ren
Cleber Zanchettin
Adriano Oliveira
Teresa B Ludermir
OODD
UQCV
22
31
0
15 Aug 2019
All-Optical Machine Learning Using Diffractive Deep Neural Networks
All-Optical Machine Learning Using Diffractive Deep Neural Networks
Xing Lin
Y. Rivenson
N. Yardimci
Muhammed Veli
Mona Jarrahi
Aydogan Ozcan
76
1,628
0
14 Apr 2018
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
362
11,700
0
09 Mar 2017
Aggregated Residual Transformations for Deep Neural Networks
Aggregated Residual Transformations for Deep Neural Networks
Saining Xie
Ross B. Girshick
Piotr Dollár
Z. Tu
Kaiming He
297
10,225
0
16 Nov 2016
Previous
12