ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.05557
  4. Cited By
Learning Entangled Single-Sample Gaussians in the Subset-of-Signals
  Model

Learning Entangled Single-Sample Gaussians in the Subset-of-Signals Model

10 July 2020
Yingyu Liang
Hui Yuan
ArXiv (abs)PDFHTML

Papers citing "Learning Entangled Single-Sample Gaussians in the Subset-of-Signals Model"

11 / 11 papers shown
Title
Efficient Multivariate Robust Mean Estimation Under Mean-Shift Contamination
Efficient Multivariate Robust Mean Estimation Under Mean-Shift Contamination
Ilias Diakonikolas
Giannis Iakovidis
D. Kane
Thanasis Pittas
183
0
0
20 Feb 2025
Learning Entangled Single-Sample Distributions via Iterative Trimming
Learning Entangled Single-Sample Distributions via Iterative Trimming
Hui Yuan
Yingyu Liang
48
7
0
20 Apr 2020
Estimating location parameters in entangled single-sample distributions
Estimating location parameters in entangled single-sample distributions
Ankit Pensia
Varun Jog
Po-Ling Loh
33
7
0
06 Jul 2019
High-Dimensional Robust Mean Estimation in Nearly-Linear Time
High-Dimensional Robust Mean Estimation in Nearly-Linear Time
Yu Cheng
Ilias Diakonikolas
Rong Ge
61
124
0
23 Nov 2018
Heteroskedastic PCA: Algorithm, Optimality, and Applications
Heteroskedastic PCA: Algorithm, Optimality, and Applications
Anru R. Zhang
T. Tony Cai
Yihong Wu
177
72
0
19 Oct 2018
Robustly Learning a Gaussian: Getting Optimal Error, Efficiently
Robustly Learning a Gaussian: Getting Optimal Error, Efficiently
Ilias Diakonikolas
Gautam Kamath
D. Kane
Jerry Li
Ankur Moitra
Alistair Stewart
85
135
0
12 Apr 2017
Asymptotic performance of PCA for high-dimensional heteroscedastic data
Asymptotic performance of PCA for high-dimensional heteroscedastic data
David Hong
Laura Balzano
Jeffrey A. Fessler
51
55
0
20 Mar 2017
Being Robust (in High Dimensions) Can Be Practical
Being Robust (in High Dimensions) Can Be Practical
Ilias Diakonikolas
Gautam Kamath
D. Kane
Jerry Li
Ankur Moitra
Alistair Stewart
123
255
0
02 Mar 2017
Robust Estimators in High Dimensions without the Computational
  Intractability
Robust Estimators in High Dimensions without the Computational Intractability
Ilias Diakonikolas
Gautam Kamath
D. Kane
Jingkai Li
Ankur Moitra
Alistair Stewart
75
513
0
21 Apr 2016
Polynomial Learning of Distribution Families
Polynomial Learning of Distribution Families
M. Belkin
Kaushik Sinha
399
226
0
27 Apr 2010
Settling the Polynomial Learnability of Mixtures of Gaussians
Settling the Polynomial Learnability of Mixtures of Gaussians
Ankur Moitra
Gregory Valiant
257
343
0
23 Apr 2010
1