Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2007.05305
Cited By
v1
v2 (latest)
ExpertNet: Adversarial Learning and Recovery Against Noisy Labels
10 July 2020
Amirmasoud Ghiassi
Robert Birke
Rui Han
L. Chen
NoLa
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"ExpertNet: Adversarial Learning and Recovery Against Noisy Labels"
10 / 10 papers shown
Title
How does Disagreement Help Generalization against Label Corruption?
Xingrui Yu
Bo Han
Jiangchao Yao
Gang Niu
Ivor W. Tsang
Masashi Sugiyama
NoLa
76
787
0
14 Jan 2019
Label-Noise Robust Generative Adversarial Networks
Takuhiro Kaneko
Yoshitaka Ushiku
Tatsuya Harada
NoLa
92
60
0
27 Nov 2018
Learning to Reweight Examples for Robust Deep Learning
Mengye Ren
Wenyuan Zeng
Binh Yang
R. Urtasun
OOD
NoLa
149
1,431
0
24 Mar 2018
Robust Loss Functions under Label Noise for Deep Neural Networks
Aritra Ghosh
Himanshu Kumar
P. Sastry
NoLa
OOD
78
959
0
27 Dec 2017
MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks on Corrupted Labels
Lu Jiang
Zhengyuan Zhou
Thomas Leung
Li Li
Li Fei-Fei
NoLa
126
1,456
0
14 Dec 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
317
12,131
0
19 Jun 2017
Ensemble Adversarial Training: Attacks and Defenses
Florian Tramèr
Alexey Kurakin
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
177
2,729
0
19 May 2017
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
348
4,635
0
10 Nov 2016
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
472
3,148
0
04 Nov 2016
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
282
14,963
1
21 Dec 2013
1