Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2007.04759
Cited By
Expressivity of Deep Neural Networks
9 July 2020
Ingo Gühring
Mones Raslan
Gitta Kutyniok
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Expressivity of Deep Neural Networks"
50 / 59 papers shown
Title
From Alexnet to Transformers: Measuring the Non-linearity of Deep Neural Networks with Affine Optimal Transport
Quentin Bouniot
I. Redko
Anton Mallasto
Charlotte Laclau
Karol Arndt
Oliver Struckmeier
Markus Heinonen
Ville Kyrki
Samuel Kaski
146
2
0
17 Oct 2023
DeepXDE: A deep learning library for solving differential equations
Lu Lu
Xuhui Meng
Zhiping Mao
George Karniadakis
PINN
AI4CE
99
1,544
0
10 Jul 2019
Deep splitting method for parabolic PDEs
C. Beck
S. Becker
Patrick Cheridito
Arnulf Jentzen
Ariel Neufeld
64
126
0
08 Jul 2019
The phase diagram of approximation rates for deep neural networks
Dmitry Yarotsky
Anton Zhevnerchuk
65
122
0
22 Jun 2019
Approximation spaces of deep neural networks
Rémi Gribonval
Gitta Kutyniok
M. Nielsen
Felix Voigtländer
89
125
0
03 May 2019
A Theoretical Analysis of Deep Neural Networks and Parametric PDEs
Gitta Kutyniok
P. Petersen
Mones Raslan
R. Schneider
87
198
0
31 Mar 2019
Approximation and Non-parametric Estimation of ResNet-type Convolutional Neural Networks
Kenta Oono
Taiji Suzuki
96
58
0
24 Mar 2019
Rectified deep neural networks overcome the curse of dimensionality for nonsmooth value functions in zero-sum games of nonlinear stiff systems
C. Reisinger
Yufei Zhang
42
70
0
15 Mar 2019
Error bounds for approximations with deep ReLU neural networks in
W
s
,
p
W^{s,p}
W
s
,
p
norms
Ingo Gühring
Gitta Kutyniok
P. Petersen
89
200
0
21 Feb 2019
Deep Neural Network Approximation Theory
Dennis Elbrächter
Dmytro Perekrestenko
Philipp Grohs
Helmut Bölcskei
68
210
0
08 Jan 2019
Physics-informed deep generative models
Yibo Yang
P. Perdikaris
AI4CE
PINN
79
59
0
09 Dec 2018
Adaptivity of deep ReLU network for learning in Besov and mixed smooth Besov spaces: optimal rate and curse of dimensionality
Taiji Suzuki
182
246
0
18 Oct 2018
A proof that deep artificial neural networks overcome the curse of dimensionality in the numerical approximation of Kolmogorov partial differential equations with constant diffusion and nonlinear drift coefficients
Arnulf Jentzen
Diyora Salimova
Timo Welti
AI4CE
49
119
0
19 Sep 2018
Analysis of the Generalization Error: Empirical Risk Minimization over Deep Artificial Neural Networks Overcomes the Curse of Dimensionality in the Numerical Approximation of Black-Scholes Partial Differential Equations
Julius Berner
Philipp Grohs
Arnulf Jentzen
66
183
0
09 Sep 2018
Equivalence of approximation by convolutional neural networks and fully-connected networks
P. Petersen
Felix Voigtländer
60
80
0
04 Sep 2018
ResNet with one-neuron hidden layers is a Universal Approximator
Hongzhou Lin
Stefanie Jegelka
105
229
0
28 Jun 2018
Universality of Deep Convolutional Neural Networks
Ding-Xuan Zhou
HAI
PINN
412
517
0
28 May 2018
Universal approximations of invariant maps by neural networks
Dmitry Yarotsky
124
214
0
26 Apr 2018
Deep Neural Networks Learn Non-Smooth Functions Effectively
Masaaki Imaizumi
Kenji Fukumizu
150
124
0
13 Feb 2018
Optimal approximation of continuous functions by very deep ReLU networks
Dmitry Yarotsky
196
294
0
10 Feb 2018
Deep Hidden Physics Models: Deep Learning of Nonlinear Partial Differential Equations
M. Raissi
PINN
AI4CE
120
757
0
20 Jan 2018
Expressive power of recurrent neural networks
Valentin Khrulkov
Alexander Novikov
Ivan Oseledets
89
114
0
02 Nov 2017
Approximating Continuous Functions by ReLU Nets of Minimal Width
Boris Hanin
Mark Sellke
107
239
0
31 Oct 2017
Optimization Landscape and Expressivity of Deep CNNs
Quynh N. Nguyen
Matthias Hein
74
29
0
30 Oct 2017
The Deep Ritz method: A deep learning-based numerical algorithm for solving variational problems
E. Weinan
Ting Yu
125
1,390
0
30 Sep 2017
Optimal approximation of piecewise smooth functions using deep ReLU neural networks
P. Petersen
Felix Voigtländer
223
475
0
15 Sep 2017
The Expressive Power of Neural Networks: A View from the Width
Zhou Lu
Hongming Pu
Feicheng Wang
Zhiqiang Hu
Liwei Wang
99
899
0
08 Sep 2017
DGM: A deep learning algorithm for solving partial differential equations
Justin A. Sirignano
K. Spiliopoulos
AI4CE
93
2,067
0
24 Aug 2017
Nonparametric regression using deep neural networks with ReLU activation function
Johannes Schmidt-Hieber
238
816
0
22 Aug 2017
Universal Function Approximation by Deep Neural Nets with Bounded Width and ReLU Activations
Boris Hanin
64
356
0
09 Aug 2017
Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations
Weinan E
Jiequn Han
Arnulf Jentzen
125
797
0
15 Jun 2017
Neural networks and rational functions
Matus Telgarsky
66
82
0
11 Jun 2017
The power of deeper networks for expressing natural functions
David Rolnick
Max Tegmark
158
174
0
16 May 2017
Optimal Approximation with Sparsely Connected Deep Neural Networks
Helmut Bölcskei
Philipp Grohs
Gitta Kutyniok
P. Petersen
197
256
0
04 May 2017
Identity Matters in Deep Learning
Moritz Hardt
Tengyu Ma
OOD
94
399
0
14 Nov 2016
Understanding Deep Neural Networks with Rectified Linear Units
R. Arora
A. Basu
Poorya Mianjy
Anirbit Mukherjee
PINN
164
643
0
04 Nov 2016
Why and When Can Deep -- but Not Shallow -- Networks Avoid the Curse of Dimensionality: a Review
T. Poggio
H. Mhaskar
Lorenzo Rosasco
Brando Miranda
Q. Liao
143
576
0
02 Nov 2016
Deep Learning Approximation for Stochastic Control Problems
Jiequn Han
E. Weinan
BDL
61
197
0
02 Nov 2016
Depth-Width Tradeoffs in Approximating Natural Functions with Neural Networks
Itay Safran
Ohad Shamir
87
175
0
31 Oct 2016
Why Deep Neural Networks for Function Approximation?
Shiyu Liang
R. Srikant
138
385
0
13 Oct 2016
Error bounds for approximations with deep ReLU networks
Dmitry Yarotsky
198
1,233
0
03 Oct 2016
Deep vs. shallow networks : An approximation theory perspective
H. Mhaskar
T. Poggio
165
341
0
10 Aug 2016
On the Expressive Power of Deep Neural Networks
M. Raghu
Ben Poole
Jon M. Kleinberg
Surya Ganguli
Jascha Narain Sohl-Dickstein
66
790
0
16 Jun 2016
Learning Functions: When Is Deep Better Than Shallow
H. Mhaskar
Q. Liao
T. Poggio
72
144
0
03 Mar 2016
Benefits of depth in neural networks
Matus Telgarsky
380
609
0
14 Feb 2016
The Power of Depth for Feedforward Neural Networks
Ronen Eldan
Ohad Shamir
221
732
0
12 Dec 2015
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,510
0
10 Dec 2015
Provable approximation properties for deep neural networks
Uri Shaham
A. Cloninger
Ronald R. Coifman
181
231
0
24 Sep 2015
On the Expressive Power of Deep Learning: A Tensor Analysis
Nadav Cohen
Or Sharir
Amnon Shashua
81
472
0
16 Sep 2015
Highway Networks
R. Srivastava
Klaus Greff
Jürgen Schmidhuber
183
1,773
0
03 May 2015
1
2
Next