ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.04532
  4. Cited By
A Study of Gradient Variance in Deep Learning

A Study of Gradient Variance in Deep Learning

9 July 2020
Fartash Faghri
David Duvenaud
David J. Fleet
Jimmy Ba
    FedML
    ODL
ArXivPDFHTML

Papers citing "A Study of Gradient Variance in Deep Learning"

11 / 11 papers shown
Title
FedDuA: Doubly Adaptive Federated Learning
FedDuA: Doubly Adaptive Federated Learning
Shokichi Takakura
Seng Pei Liew
Satoshi Hasegawa
FedML
30
0
0
16 May 2025
Multiple Importance Sampling for Stochastic Gradient Estimation
Multiple Importance Sampling for Stochastic Gradient Estimation
Corentin Salaün
Xingchang Huang
Iliyan Georgiev
Niloy J. Mitra
Gurprit Singh
32
1
0
22 Jul 2024
Critical Learning Periods: Leveraging Early Training Dynamics for
  Efficient Data Pruning
Critical Learning Periods: Leveraging Early Training Dynamics for Efficient Data Pruning
E. Chimoto
Jay Gala
Orevaoghene Ahia
Julia Kreutzer
Bruce A. Bassett
Sara Hooker
VLM
55
4
0
29 May 2024
Metadata Archaeology: Unearthing Data Subsets by Leveraging Training
  Dynamics
Metadata Archaeology: Unearthing Data Subsets by Leveraging Training Dynamics
Shoaib Ahmed Siddiqui
Nitarshan Rajkumar
Tegan Maharaj
David M. Krueger
Sara Hooker
72
27
0
20 Sep 2022
On the Interpretability of Regularisation for Neural Networks Through
  Model Gradient Similarity
On the Interpretability of Regularisation for Neural Networks Through Model Gradient Similarity
Vincent Szolnoky
Viktor Andersson
Balázs Kulcsár
Rebecka Jörnsten
45
5
0
25 May 2022
MSTGD:A Memory Stochastic sTratified Gradient Descent Method with an
  Exponential Convergence Rate
MSTGD:A Memory Stochastic sTratified Gradient Descent Method with an Exponential Convergence Rate
Aixiang Chen
Chen
Jinting Zhang
Zanbo Zhang
Zhihong Li
48
0
0
21 Feb 2022
On the Generalization of Models Trained with SGD: Information-Theoretic
  Bounds and Implications
On the Generalization of Models Trained with SGD: Information-Theoretic Bounds and Implications
Ziqiao Wang
Yongyi Mao
FedML
MLT
44
22
0
07 Oct 2021
Fishr: Invariant Gradient Variances for Out-of-Distribution
  Generalization
Fishr: Invariant Gradient Variances for Out-of-Distribution Generalization
Alexandre Ramé
Corentin Dancette
Matthieu Cord
OOD
56
206
0
07 Sep 2021
Estimating Example Difficulty Using Variance of Gradients
Estimating Example Difficulty Using Variance of Gradients
Chirag Agarwal
Daniel D'souza
Sara Hooker
218
109
0
26 Aug 2020
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
  Minima
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
312
2,900
0
15 Sep 2016
Efficient Per-Example Gradient Computations
Efficient Per-Example Gradient Computations
Ian Goodfellow
186
75
0
07 Oct 2015
1