ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.04069
  4. Cited By
Auto-MAP: A DQN Framework for Exploring Distributed Execution Plans for
  DNN Workloads

Auto-MAP: A DQN Framework for Exploring Distributed Execution Plans for DNN Workloads

8 July 2020
Siyu Wang
Yi Rong
Shiqing Fan
Zhen Zheng
Lansong Diao
Guoping Long
Jun Yang
Xiaoyong Liu
Wei Lin
ArXivPDFHTML

Papers citing "Auto-MAP: A DQN Framework for Exploring Distributed Execution Plans for DNN Workloads"

3 / 3 papers shown
Title
UniAP: Unifying Inter- and Intra-Layer Automatic Parallelism by Mixed Integer Quadratic Programming
UniAP: Unifying Inter- and Intra-Layer Automatic Parallelism by Mixed Integer Quadratic Programming
Hao Lin
Ke Wu
Jie Li
Jun Yu Li
Wu-Jun Li
39
2
0
31 Jul 2023
DAPPLE: A Pipelined Data Parallel Approach for Training Large Models
DAPPLE: A Pipelined Data Parallel Approach for Training Large Models
Shiqing Fan
Yi Rong
Chen Meng
Zongyan Cao
Siyu Wang
...
Jun Yang
Lixue Xia
Lansong Diao
Xiaoyong Liu
Wei Lin
21
233
0
02 Jul 2020
Megatron-LM: Training Multi-Billion Parameter Language Models Using
  Model Parallelism
Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism
Mohammad Shoeybi
M. Patwary
Raul Puri
P. LeGresley
Jared Casper
Bryan Catanzaro
MoE
245
1,836
0
17 Sep 2019
1