Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2007.03758
Cited By
Deep learning of thermodynamics-aware reduced-order models from data
3 July 2020
Quercus Hernandez
Alberto Badías
D. González
Francisco Chinesta
Elías Cueto
PINN
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep learning of thermodynamics-aware reduced-order models from data"
9 / 9 papers shown
Title
Efficiently Parameterized Neural Metriplectic Systems
Anthony Gruber
Kookjin Lee
Haksoo Lim
Noseong Park
Nathaniel Trask
65
1
0
28 Jan 2025
Predicting and explaining nonlinear material response using deep Physically Guided Neural Networks with Internal Variables
Javier Orera-Echeverria
J. Ayensa-Jiménez
Manuel Doblaré
25
1
0
07 Aug 2023
A graph convolutional autoencoder approach to model order reduction for parametrized PDEs
F. Pichi
B. Moya
J. Hesthaven
AI4CE
38
52
0
15 May 2023
Port-metriplectic neural networks: thermodynamics-informed machine learning of complex physical systems
Quercus Hernandez
Alberto Badías
Francisco Chinesta
Elías Cueto
PINN
AI4CE
27
13
0
03 Nov 2022
Approximation of nearly-periodic symplectic maps via structure-preserving neural networks
Valentin Duruisseaux
J. Burby
Q. Tang
33
11
0
11 Oct 2022
Evolution TANN and the identification of internal variables and evolution equations in solid mechanics
Filippo Masi
I. Stefanou
AI4CE
24
30
0
27 Sep 2022
Thermodynamics of learning physical phenomena
Elías Cueto
Francisco Chinesta
AI4CE
25
22
0
26 Jul 2022
Thermodynamics-informed graph neural networks
Quercus Hernandez
Alberto Badías
Francisco Chinesta
Elías Cueto
AI4CE
PINN
32
31
0
03 Mar 2022
The mixed deep energy method for resolving concentration features in finite strain hyperelasticity
J. Fuhg
N. Bouklas
PINN
AI4CE
28
90
0
15 Apr 2021
1