Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2007.02915
Cited By
Are Labels Always Necessary for Classifier Accuracy Evaluation?
6 July 2020
Weijian Deng
Liang Zheng
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Are Labels Always Necessary for Classifier Accuracy Evaluation?"
30 / 30 papers shown
Title
Supervised Models Can Generalize Also When Trained on Random Labels
Oskar Allerbo
Thomas B. Schön
OOD
SSL
42
0
0
16 May 2025
BackMix: Regularizing Open Set Recognition by Removing Underlying Fore-Background Priors
Yu Wang
Junxian Mu
Hongzhi Huang
Qilong Wang
Pengfei Zhu
Q. Hu
60
0
0
22 Mar 2025
Early Stopping Against Label Noise Without Validation Data
Suqin Yuan
Lei Feng
Tongliang Liu
NoLa
107
18
0
11 Feb 2025
What Does Softmax Probability Tell Us about Classifiers Ranking Across Diverse Test Conditions?
Weijie Tu
Weijian Deng
Liang Zheng
Tom Gedeon
53
0
0
14 Jun 2024
Leveraging Gradients for Unsupervised Accuracy Estimation under Distribution Shift
Renchunzi Xie
Ambroise Odonnat
Vasilii Feofanov
I. Redko
Jianfeng Zhang
Bo An
UQCV
80
1
0
17 Jan 2024
Estimating Model Performance Under Covariate Shift Without Labels
Jakub Bialek
W. Kuberski
Nikolaos Perrakis
Albert Bifet
44
2
0
16 Jan 2024
MetaDefa: Meta-learning based on Domain Enhancement and Feature Alignment for Single Domain Generalization
Can Sun
Hao Zheng
Zhigang Hu
Liu Yang
Meiguang Zheng
Bo Xu
21
0
0
27 Nov 2023
Anchor Points: Benchmarking Models with Much Fewer Examples
Rajan Vivek
Kawin Ethayarajh
Diyi Yang
Douwe Kiela
ALM
34
22
0
14 Sep 2023
Validation of the Practicability of Logical Assessment Formula for Evaluations with Inaccurate Ground-Truth Labels
Yongquan Yang
Hong Bu
40
0
0
06 Jul 2023
A Bag-of-Prototypes Representation for Dataset-Level Applications
Wei-Chih Tu
Weijian Deng
Tom Gedeon
Liang Zheng
49
9
0
23 Mar 2023
Demystifying Disagreement-on-the-Line in High Dimensions
Dong-Hwan Lee
Behrad Moniri
Xinmeng Huang
Yan Sun
Hamed Hassani
27
8
0
31 Jan 2023
HAPI: A Large-scale Longitudinal Dataset of Commercial ML API Predictions
Lingjiao Chen
Zhihua Jin
Sabri Eyuboglu
Christopher Ré
Matei A. Zaharia
James Zou
58
9
0
18 Sep 2022
What can we Learn by Predicting Accuracy?
Olivier Risser-Maroix
Benjamin Chamand
37
4
0
02 Aug 2022
Estimating Model Performance under Domain Shifts with Class-Specific Confidence Scores
Zeju Li
Konstantinos Kamnitsas
Mobarakol Islam
Chen Chen
Ben Glocker
30
9
0
20 Jul 2022
On the Strong Correlation Between Model Invariance and Generalization
Weijian Deng
Stephen Gould
Liang Zheng
OOD
37
16
0
14 Jul 2022
What is Flagged in Uncertainty Quantification? Latent Density Models for Uncertainty Categorization
Hao Sun
B. V. Breugel
Jonathan Crabbé
Nabeel Seedat
M. Schaar
37
4
0
11 Jul 2022
Firenze: Model Evaluation Using Weak Signals
Bhavna Soman
A. Torkamani
Michael J. Morais
Jeffrey Bickford
Baris Coskun
44
2
0
02 Jul 2022
Performance Prediction Under Dataset Shift
Simona Maggio
Victor Bouvier
L. Dreyfus-Schmidt
OOD
AI4TS
21
2
0
21 Jun 2022
Attribute Descent: Simulating Object-Centric Datasets on the Content Level and Beyond
Yue Yao
Liang Zheng
Xiaodong Yang
Milind Napthade
Tom Gedeon
33
17
0
28 Feb 2022
Deconstructing Distributions: A Pointwise Framework of Learning
Gal Kaplun
Nikhil Ghosh
Saurabh Garg
Boaz Barak
Preetum Nakkiran
OOD
38
21
0
20 Feb 2022
Predicting Out-of-Distribution Error with the Projection Norm
Yaodong Yu
Zitong Yang
Alexander Wei
Yi Ma
Jacob Steinhardt
OODD
25
43
0
11 Feb 2022
Label-Free Model Evaluation with Semi-Structured Dataset Representations
Xiaoxiao Sun
Yunzhong Hou
Hongdong Li
Liang Zheng
27
11
0
01 Dec 2021
One to Transfer All: A Universal Transfer Framework for Vision Foundation Model with Few Data
Yujie Wang
Junqin Huang
Mengya Gao
Yichao Wu
Zhen-fei Yin
Ding Liang
Junjie Yan
14
0
0
24 Nov 2021
Logical Assessment Formula and Its Principles for Evaluations with Inaccurate Ground-Truth Labels
Yongquan Yang
41
3
0
22 Oct 2021
A Framework for Cluster and Classifier Evaluation in the Absence of Reference Labels
R. Joyce
Edward Raff
Charles K. Nicholas
51
16
0
23 Sep 2021
Predicting with Confidence on Unseen Distributions
Devin Guillory
Vaishaal Shankar
Sayna Ebrahimi
Trevor Darrell
Ludwig Schmidt
UQCV
OOD
30
117
0
07 Jul 2021
Detecting Errors and Estimating Accuracy on Unlabeled Data with Self-training Ensembles
Jiefeng Chen
Frederick Liu
Besim Avci
Xi Wu
Yingyu Liang
S. Jha
32
61
0
29 Jun 2021
Towards Distraction-Robust Active Visual Tracking
Fangwei Zhong
Peng Sun
Wenhan Luo
Tingyun Yan
Yizhou Wang
AAML
30
33
0
18 Jun 2021
What Does Rotation Prediction Tell Us about Classifier Accuracy under Varying Testing Environments?
Weijian Deng
Stephen Gould
Liang Zheng
39
63
0
10 Jun 2021
Anti-aliasing Semantic Reconstruction for Few-Shot Semantic Segmentation
Binghao Liu
Yao Ding
Jianbin Jiao
Xiangyang Ji
QiXiang Ye
29
47
0
01 Jun 2021
1