ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.02448
  4. Cited By
Novel min-max reformulations of Linear Inverse Problems

Novel min-max reformulations of Linear Inverse Problems

5 July 2020
Mohammed Rayyan Sheriff
Debasish Chatterjee
ArXivPDFHTML

Papers citing "Novel min-max reformulations of Linear Inverse Problems"

1 / 1 papers shown
Title
Linear Convergence of the Primal-Dual Gradient Method for Convex-Concave
  Saddle Point Problems without Strong Convexity
Linear Convergence of the Primal-Dual Gradient Method for Convex-Concave Saddle Point Problems without Strong Convexity
S. Du
Wei Hu
58
120
0
05 Feb 2018
1