ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.01542
  4. Cited By
Strategies for Using Proximal Policy Optimization in Mobile Puzzle Games

Strategies for Using Proximal Policy Optimization in Mobile Puzzle Games

3 July 2020
J. Kristensen
Paolo Burelli
    OffRL
ArXivPDFHTML

Papers citing "Strategies for Using Proximal Policy Optimization in Mobile Puzzle Games"

4 / 4 papers shown
Title
Estimating player completion rate in mobile puzzle games using
  reinforcement learning
Estimating player completion rate in mobile puzzle games using reinforcement learning
J. Kristensen
Arturo Valdivia
Paolo Burelli
11
13
0
26 Jun 2023
A2C is a special case of PPO
A2C is a special case of PPO
Shengyi Huang
Anssi Kanervisto
Antonin Raffin
Weixun Wang
Santiago Ontañón
Rousslan Fernand Julien Dossa
OffRL
34
25
0
18 May 2022
Soft Actor-Critic for Discrete Action Settings
Soft Actor-Critic for Discrete Action Settings
Petros Christodoulou
OffRL
104
292
0
16 Oct 2019
Emergence of Locomotion Behaviours in Rich Environments
Emergence of Locomotion Behaviours in Rich Environments
N. Heess
TB Dhruva
S. Sriram
Jay Lemmon
J. Merel
...
Tom Erez
Ziyun Wang
S. M. Ali Eslami
Martin Riedmiller
David Silver
143
928
0
07 Jul 2017
1