Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2007.01383
Cited By
Deep Interactive Learning: An Efficient Labeling Approach for Deep Learning-Based Osteosarcoma Treatment Response Assessment
2 July 2020
D. J. Ho
Narasimhan P. Agaram
P. Schueffler
Chad M. Vanderbilt
M. Jean
M. Hameed
Thomas J. Fuchs
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Interactive Learning: An Efficient Labeling Approach for Deep Learning-Based Osteosarcoma Treatment Response Assessment"
8 / 8 papers shown
Title
Deep neural network models for computational histopathology: A survey
C. Srinidhi
Ozan Ciga
Anne L. Martel
AI4CE
85
573
0
28 Dec 2019
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
319
42,038
0
03 Dec 2019
Deep Multi-Magnification Networks for Multi-Class Breast Cancer Image Segmentation
D. J. Ho
D. V. K. Yarlagadda
Timothy D’alfonso
M. Hanna
Anne Grabenstetter
Peter Ntiamoah
E. Brogi
L. Tan
Thomas J. Fuchs
34
107
0
29 Oct 2019
A Robust and Effective Approach Towards Accurate Metastasis Detection and pN-stage Classification in Breast Cancer
Byungjae Lee
K. Paeng
43
55
0
30 May 2018
Deep Learning for Identifying Metastatic Breast Cancer
Dayong Wang
A. Khosla
Rishab Gargeya
H. Irshad
Andrew H. Beck
MedIm
64
940
0
18 Jun 2016
Fully Convolutional Networks for Semantic Segmentation
Evan Shelhamer
Jonathan Long
Trevor Darrell
VOS
SSeg
440
37,704
0
20 May 2016
Computational Pathology: Challenges and Promises for Tissue Analysis
Thomas J. Fuchs
J. M. Buhmann
AI4CE
42
251
0
31 Dec 2015
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg
3DV
1.4K
76,547
0
18 May 2015
1