ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.00784
  4. Cited By
Convolutional Neural Network Training with Distributed K-FAC

Convolutional Neural Network Training with Distributed K-FAC

1 July 2020
J. G. Pauloski
Zhao Zhang
Lei Huang
Weijia Xu
Ian Foster
ArXivPDFHTML

Papers citing "Convolutional Neural Network Training with Distributed K-FAC"

10 / 10 papers shown
Title
An Improved Empirical Fisher Approximation for Natural Gradient Descent
An Improved Empirical Fisher Approximation for Natural Gradient Descent
Xiaodong Wu
Wenyi Yu
Chao Zhang
Philip Woodland
29
3
0
10 Jun 2024
Eva: A General Vectorized Approximation Framework for Second-order
  Optimization
Eva: A General Vectorized Approximation Framework for Second-order Optimization
Lin Zhang
S. Shi
Bo-wen Li
28
1
0
04 Aug 2023
PipeFisher: Efficient Training of Large Language Models Using Pipelining
  and Fisher Information Matrices
PipeFisher: Efficient Training of Large Language Models Using Pipelining and Fisher Information Matrices
Kazuki Osawa
Shigang Li
Torsten Hoefler
AI4CE
35
24
0
25 Nov 2022
Scalable K-FAC Training for Deep Neural Networks with Distributed
  Preconditioning
Scalable K-FAC Training for Deep Neural Networks with Distributed Preconditioning
Lin Zhang
S. Shi
Wei Wang
Bo-wen Li
36
10
0
30 Jun 2022
COMET: A Novel Memory-Efficient Deep Learning Training Framework by
  Using Error-Bounded Lossy Compression
COMET: A Novel Memory-Efficient Deep Learning Training Framework by Using Error-Bounded Lossy Compression
Sian Jin
Chengming Zhang
Xintong Jiang
Yunhe Feng
Hui Guan
Guanpeng Li
Shuaiwen Leon Song
Dingwen Tao
27
23
0
18 Nov 2021
Large-Scale Deep Learning Optimizations: A Comprehensive Survey
Large-Scale Deep Learning Optimizations: A Comprehensive Survey
Xiaoxin He
Fuzhao Xue
Xiaozhe Ren
Yang You
30
14
0
01 Nov 2021
Accelerating Distributed K-FAC with Smart Parallelism of Computing and
  Communication Tasks
Accelerating Distributed K-FAC with Smart Parallelism of Computing and Communication Tasks
S. Shi
Lin Zhang
Bo-wen Li
40
9
0
14 Jul 2021
An Oracle for Guiding Large-Scale Model/Hybrid Parallel Training of
  Convolutional Neural Networks
An Oracle for Guiding Large-Scale Model/Hybrid Parallel Training of Convolutional Neural Networks
A. Kahira
Truong Thao Nguyen
L. Bautista-Gomez
Ryousei Takano
Rosa M. Badia
M. Wahib
15
9
0
19 Apr 2021
GIST: Distributed Training for Large-Scale Graph Convolutional Networks
GIST: Distributed Training for Large-Scale Graph Convolutional Networks
Cameron R. Wolfe
Jingkang Yang
Arindam Chowdhury
Chen Dun
Artun Bayer
Santiago Segarra
Anastasios Kyrillidis
BDL
GNN
LRM
54
9
0
20 Feb 2021
A Trace-restricted Kronecker-Factored Approximation to Natural Gradient
A Trace-restricted Kronecker-Factored Approximation to Natural Gradient
Kai-Xin Gao
Xiaolei Liu
Zheng-Hai Huang
Min Wang
Zidong Wang
Dachuan Xu
F. Yu
24
11
0
21 Nov 2020
1