ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.00330
35
48

Formalizing Traffic Rules for Machine Interpretability

1 July 2020
Klemens Esterle
Luis Gressenbuch
Alois Knoll
ArXivPDFHTML
Abstract

Autonomous vehicles need to be designed to abide by the same rules that humans follow. This is challenging, because traffic rules are fuzzy and not well defined, making them incomprehensible to machines. Satisfaction cannot be incorporated in a planning component without proper formalization, nor can it be monitored and verified during simulation or testing. However, no research work has provided a consistent set of machine-interpretable traffic rules for a given operational driving domain. In this paper, we propose a methodology for the legal study and formalization of traffic rules in a formal language. We use Linear Temporal Logic as a formal specification language to describe temporal behaviors, capable of capturing a wide range of traffic rules. We contribute a formalized set of traffic rules for dual carriageways and evaluate the effectiveness of our formalized rules on a public dataset.

View on arXiv
Comments on this paper