ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.16901
  4. Cited By
Hierarchical sparse Cholesky decomposition with applications to
  high-dimensional spatio-temporal filtering
v1v2 (latest)

Hierarchical sparse Cholesky decomposition with applications to high-dimensional spatio-temporal filtering

30 June 2020
M. Jurek
Matthias Katzfuss
ArXiv (abs)PDFHTML

Papers citing "Hierarchical sparse Cholesky decomposition with applications to high-dimensional spatio-temporal filtering"

16 / 16 papers shown
Title
Scaled Vecchia approximation for fast computer-model emulation
Scaled Vecchia approximation for fast computer-model emulation
Matthias Katzfuss
J. Guinness
E. Lawrence
49
40
0
01 May 2020
Sparse Cholesky factorization by Kullback-Leibler minimization
Sparse Cholesky factorization by Kullback-Leibler minimization
Florian Schäfer
Matthias Katzfuss
H. Owhadi
78
95
0
29 Apr 2020
Vecchia-Laplace approximations of generalized Gaussian processes for big
  non-Gaussian spatial data
Vecchia-Laplace approximations of generalized Gaussian processes for big non-Gaussian spatial data
Daniel Zilber
Matthias Katzfuss
68
34
0
18 Jun 2019
Multi-resolution filters for massive spatio-temporal data
Multi-resolution filters for massive spatio-temporal data
M. Jurek
Matthias Katzfuss
49
24
0
09 Oct 2018
Scalable Gaussian Process Computations Using Hierarchical Matrices
Scalable Gaussian Process Computations Using Hierarchical Matrices
Christopher J. Geoga
M. Anitescu
Michael L. Stein
60
43
0
09 Aug 2018
When Gaussian Process Meets Big Data: A Review of Scalable GPs
When Gaussian Process Meets Big Data: A Review of Scalable GPs
Haitao Liu
Yew-Soon Ong
Xiaobo Shen
Jianfei Cai
GP
101
693
0
03 Jul 2018
Vecchia approximations of Gaussian-process predictions
Vecchia approximations of Gaussian-process predictions
Matthias Katzfuss
J. Guinness
Wenlong Gong
Daniel Zilber
59
93
0
08 May 2018
A class of multi-resolution approximations for large spatial datasets
A class of multi-resolution approximations for large spatial datasets
Matthias Katzfuss
Wenlong Gong
GP
141
30
0
24 Oct 2017
A general framework for Vecchia approximations of Gaussian processes
A general framework for Vecchia approximations of Gaussian processes
Matthias Katzfuss
J. Guinness
54
261
0
21 Aug 2017
Ensemble Kalman methods for high-dimensional hierarchical dynamic
  space-time models
Ensemble Kalman methods for high-dimensional hierarchical dynamic space-time models
Matthias Katzfuss
Jonathan R. Stroud
C. Wikle
102
69
0
23 Apr 2017
Permutation and Grouping Methods for Sharpening Gaussian Process
  Approximations
Permutation and Grouping Methods for Sharpening Gaussian Process Approximations
J. Guinness
373
151
0
17 Sep 2016
A multi-resolution approximation for massive spatial datasets
A multi-resolution approximation for massive spatial datasets
Matthias Katzfuss
92
245
0
16 Jul 2015
A Kalman filter powered by $\mathcal{H}^2$-matrices for quasi-continuous
  data assimilation problems
A Kalman filter powered by H2\mathcal{H}^2H2-matrices for quasi-continuous data assimilation problems
Judith Yue Li
Sivaram Ambikasaran
Eric F. Darve
P. Kitanidis
45
38
0
15 Apr 2014
Fast Direct Methods for Gaussian Processes
Fast Direct Methods for Gaussian Processes
Sivaram Ambikasaran
D. Foreman-Mackey
L. Greengard
D. Hogg
M. O’Neil
102
386
0
24 Mar 2014
Parallel inference for massive distributed spatial data using low-rank
  models
Parallel inference for massive distributed spatial data using low-rank models
Matthias Katzfuss
D. Hammerling
115
34
0
06 Feb 2014
When does the screening effect hold?
When does the screening effect hold?
Michael L. Stein
93
41
0
08 Mar 2012
1