Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.16495
Cited By
Guarantees for Tuning the Step Size using a Learning-to-Learn Approach
30 June 2020
Xiang Wang
Shuai Yuan
Chenwei Wu
Rong Ge
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Guarantees for Tuning the Step Size using a Learning-to-Learn Approach"
9 / 9 papers shown
Title
From Learning to Optimize to Learning Optimization Algorithms
Camille Castera
Peter Ochs
65
1
0
28 May 2024
A Nonstochastic Control Approach to Optimization
Xinyi Chen
Elad Hazan
47
5
0
19 Jan 2023
Learning-Rate-Free Learning by D-Adaptation
Aaron Defazio
Konstantin Mishchenko
30
77
0
18 Jan 2023
Federated Hyperparameter Tuning: Challenges, Baselines, and Connections to Weight-Sharing
M. Khodak
Renbo Tu
Tian Li
Liam Li
Maria-Florina Balcan
Virginia Smith
Ameet Talwalkar
FedML
43
78
0
08 Jun 2021
Generalization Guarantees for Neural Architecture Search with Train-Validation Split
Samet Oymak
Mingchen Li
Mahdi Soltanolkotabi
AI4CE
OOD
36
13
0
29 Apr 2021
Learning to Optimize: A Primer and A Benchmark
Tianlong Chen
Xiaohan Chen
Wuyang Chen
Howard Heaton
Jialin Liu
Zhangyang Wang
W. Yin
43
225
0
23 Mar 2021
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
371
11,700
0
09 Mar 2017
Forward and Reverse Gradient-Based Hyperparameter Optimization
Luca Franceschi
Michele Donini
P. Frasconi
Massimiliano Pontil
133
409
0
06 Mar 2017
Stochastic Gradient Descent for Non-smooth Optimization: Convergence Results and Optimal Averaging Schemes
Ohad Shamir
Tong Zhang
101
571
0
08 Dec 2012
1