ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.15924
  4. Cited By
Multi-fidelity modeling with different input domain definitions using
  Deep Gaussian Processes

Multi-fidelity modeling with different input domain definitions using Deep Gaussian Processes

29 June 2020
Ali Hebbal
Loïc Brevault
M. Balesdent
El-Ghazali Talbi
N. Melab
    AI4CE
ArXiv (abs)PDFHTML

Papers citing "Multi-fidelity modeling with different input domain definitions using Deep Gaussian Processes"

14 / 14 papers shown
Title
Emulation of physical processes with Emukit
Emulation of physical processes with Emukit
Andrei Paleyes
Mark Pullin
Maren Mahsereci
Cliff McCollum
Neil D. Lawrence
Javier I. González
67
80
0
25 Oct 2021
A support vector regression-based multi-fidelity surrogate model
A support vector regression-based multi-fidelity surrogate model
Maolin Shi
Shuo Wang
Wei Sun
Liye Lv
Xueguan Song
AI4CE
39
67
0
22 Jun 2019
Bayesian Optimization using Deep Gaussian Processes
Bayesian Optimization using Deep Gaussian Processes
Ali Hebbal
Loïc Brevault
M. Balesdent
El-Ghazali Talbi
N. Melab
GP
79
70
0
07 May 2019
Deep Gaussian Processes for Multi-fidelity Modeling
Deep Gaussian Processes for Multi-fidelity Modeling
Kurt Cutajar
Mark Pullin
Andreas C. Damianou
Neil D. Lawrence
Javier I. González
AI4CE
59
110
0
18 Mar 2019
Survey of multifidelity methods in uncertainty propagation, inference,
  and optimization
Survey of multifidelity methods in uncertainty propagation, inference, and optimization
Benjamin Peherstorfer
Karen E. Willcox
M. Gunzburger
AI4CE
48
755
0
28 Jun 2018
Natural Gradients in Practice: Non-Conjugate Variational Inference in
  Gaussian Process Models
Natural Gradients in Practice: Non-Conjugate Variational Inference in Gaussian Process Models
Hugh Salimbeni
Stefanos Eleftheriadis
J. Hensman
BDL
73
86
0
24 Mar 2018
Doubly Stochastic Variational Inference for Deep Gaussian Processes
Doubly Stochastic Variational Inference for Deep Gaussian Processes
Hugh Salimbeni
M. Deisenroth
BDLGP
86
421
0
24 May 2017
GPflow: A Gaussian process library using TensorFlow
GPflow: A Gaussian process library using TensorFlow
A. G. Matthews
Mark van der Wilk
T. Nickson
Keisuke Fujii
A. Boukouvalas
Pablo León-Villagrá
Zoubin Ghahramani
J. Hensman
GP
78
666
0
27 Oct 2016
Complete Graphical Characterization and Construction of Adjustment Sets
  in Markov Equivalence Classes of Ancestral Graphs
Complete Graphical Characterization and Construction of Adjustment Sets in Markov Equivalence Classes of Ancestral Graphs
Emilija Perković
J. Textor
M. Kalisch
Marloes H. Maathuis
OffRL
62
145
0
22 Jun 2016
Deep Multi-fidelity Gaussian Processes
Deep Multi-fidelity Gaussian Processes
M. Raissi
George Karniadakis
58
55
0
26 Apr 2016
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.9K
150,260
0
22 Dec 2014
Gaussian Processes for Big Data
Gaussian Processes for Big Data
J. Hensman
Nicolò Fusi
Neil D. Lawrence
GP
107
1,235
0
26 Sep 2013
Deep Gaussian Processes
Deep Gaussian Processes
Andreas C. Damianou
Neil D. Lawrence
GPBDL
138
1,183
0
02 Nov 2012
Recursive co-kriging model for Design of Computer experiments with
  multiple levels of fidelity with an application to hydrodynamic
Recursive co-kriging model for Design of Computer experiments with multiple levels of fidelity with an application to hydrodynamic
Loic Le Gratiet
AI4CE
132
295
0
02 Oct 2012
1