ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.15199
  4. Cited By
DDPG++: Striving for Simplicity in Continuous-control Off-Policy
  Reinforcement Learning

DDPG++: Striving for Simplicity in Continuous-control Off-Policy Reinforcement Learning

26 June 2020
Rasool Fakoor
Pratik Chaudhari
Alex Smola
    OffRL
ArXivPDFHTML

Papers citing "DDPG++: Striving for Simplicity in Continuous-control Off-Policy Reinforcement Learning"

6 / 6 papers shown
Title
P3O: Policy-on Policy-off Policy Optimization
P3O: Policy-on Policy-off Policy Optimization
Rasool Fakoor
Pratik Chaudhari
Alex Smola
OffRL
56
53
0
05 May 2019
Diagnosing Bottlenecks in Deep Q-learning Algorithms
Diagnosing Bottlenecks in Deep Q-learning Algorithms
Justin Fu
Aviral Kumar
Matthew Soh
Sergey Levine
OffRL
64
142
0
26 Feb 2019
Deep Reinforcement Learning that Matters
Deep Reinforcement Learning that Matters
Peter Henderson
Riashat Islam
Philip Bachman
Joelle Pineau
Doina Precup
David Meger
OffRL
114
1,940
0
19 Sep 2017
OpenAI Gym
OpenAI Gym
Greg Brockman
Vicki Cheung
Ludwig Pettersson
Jonas Schneider
John Schulman
Jie Tang
Wojciech Zaremba
OffRL
ODL
188
5,056
0
05 Jun 2016
Deep Reinforcement Learning with Double Q-learning
Deep Reinforcement Learning with Double Q-learning
H. V. Hasselt
A. Guez
David Silver
OffRL
146
7,590
0
22 Sep 2015
Continuous control with deep reinforcement learning
Continuous control with deep reinforcement learning
Timothy Lillicrap
Jonathan J. Hunt
Alexander Pritzel
N. Heess
Tom Erez
Yuval Tassa
David Silver
Daan Wierstra
242
13,174
0
09 Sep 2015
1