Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.14076
Cited By
The Convex Relaxation Barrier, Revisited: Tightened Single-Neuron Relaxations for Neural Network Verification
24 June 2020
Christian Tjandraatmadja
Ross Anderson
Joey Huchette
Will Ma
Krunal Patel
J. Vielma
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The Convex Relaxation Barrier, Revisited: Tightened Single-Neuron Relaxations for Neural Network Verification"
23 / 23 papers shown
Title
Adaptive Branch-and-Bound Tree Exploration for Neural Network Verification
Kota Fukuda
Guanqin Zhang
Zhenya Zhang
Yulei Sui
Jianjun Zhao
45
0
0
02 May 2025
Formal Verification of Markov Processes with Learned Parameters
Muhammad Maaz
Timothy C. Y. Chan
40
0
0
27 Jan 2025
On Using Certified Training towards Empirical Robustness
Alessandro De Palma
Serge Durand
Zakaria Chihani
François Terrier
Caterina Urban
OOD
AAML
33
1
0
02 Oct 2024
When Deep Learning Meets Polyhedral Theory: A Survey
Joey Huchette
Gonzalo Muñoz
Thiago Serra
Calvin Tsay
AI4CE
91
32
0
29 Apr 2023
Boosting Verified Training for Robust Image Classifications via Abstraction
Zhaodi Zhang
Zhiyi Xue
Yang Chen
Si Liu
Yueling Zhang
J. Liu
Min Zhang
33
4
0
21 Mar 2023
On the tightness of linear relaxation based robustness certification methods
Cheng Tang
AAML
21
0
0
01 Oct 2022
Provably Tightest Linear Approximation for Robustness Verification of Sigmoid-like Neural Networks
Zhaodi Zhang
Yiting Wu
Siwen Liu
Jing Liu
Min Zhang
AAML
23
11
0
21 Aug 2022
IBP Regularization for Verified Adversarial Robustness via Branch-and-Bound
Alessandro De Palma
Rudy Bunel
Krishnamurthy Dvijotham
M. P. Kumar
Robert Stanforth
AAML
40
17
0
29 Jun 2022
Adversarial Robustness of Deep Neural Networks: A Survey from a Formal Verification Perspective
Mark Huasong Meng
Guangdong Bai
Sin Gee Teo
Zhe Hou
Yan Xiao
Yun Lin
J. Dong
AAML
21
43
0
24 Jun 2022
Complete Verification via Multi-Neuron Relaxation Guided Branch-and-Bound
Claudio Ferrari
Mark Niklas Muller
Nikola Jovanović
Martin Vechev
28
82
0
30 Apr 2022
Efficient Neural Network Analysis with Sum-of-Infeasibilities
Haoze Wu
Aleksandar Zeljić
Guy Katz
Clark W. Barrett
AAML
39
30
0
19 Mar 2022
OMLT: Optimization & Machine Learning Toolkit
Francesco Ceccon
Jordan Jalving
Joshua Haddad
Alexander Thebelt
Calvin Tsay
C. Laird
Ruth Misener
32
69
0
04 Feb 2022
Neural Network Verification in Control
M. Everett
AAML
32
16
0
30 Sep 2021
GoTube: Scalable Stochastic Verification of Continuous-Depth Models
Sophie Gruenbacher
Mathias Lechner
Ramin Hasani
Daniela Rus
T. Henzinger
S. Smolka
Radu Grosu
18
17
0
18 Jul 2021
DeepSplit: Scalable Verification of Deep Neural Networks via Operator Splitting
Shaoru Chen
Eric Wong
Zico Kolter
Mahyar Fazlyab
39
15
0
16 Jun 2021
PRIMA: General and Precise Neural Network Certification via Scalable Convex Hull Approximations
Mark Niklas Muller
Gleb Makarchuk
Gagandeep Singh
Markus Püschel
Martin Vechev
33
90
0
05 Mar 2021
On the Paradox of Certified Training
Nikola Jovanović
Mislav Balunović
Maximilian Baader
Martin Vechev
OOD
23
13
0
12 Feb 2021
Towards Optimal Branching of Linear and Semidefinite Relaxations for Neural Network Robustness Certification
Brendon G. Anderson
Ziye Ma
Jingqi Li
Somayeh Sojoudi
55
1
0
22 Jan 2021
Supermodularity and valid inequalities for quadratic optimization with indicators
Alper Atamtürk
A. Gómez
18
21
0
29 Dec 2020
Scaling Polyhedral Neural Network Verification on GPUs
Christoph Müller
F. Serre
Gagandeep Singh
Markus Püschel
Martin Vechev
AAML
21
56
0
20 Jul 2020
Output Reachable Set Estimation and Verification for Multi-Layer Neural Networks
Weiming Xiang
Hoang-Dung Tran
Taylor T. Johnson
78
292
0
09 Aug 2017
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
226
1,835
0
03 Feb 2017
Safety Verification of Deep Neural Networks
Xiaowei Huang
M. Kwiatkowska
Sen Wang
Min Wu
AAML
178
932
0
21 Oct 2016
1