ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.13570
  4. Cited By
Hyperparameter Ensembles for Robustness and Uncertainty Quantification

Hyperparameter Ensembles for Robustness and Uncertainty Quantification

24 June 2020
F. Wenzel
Jasper Snoek
Dustin Tran
Rodolphe Jenatton
    UQCV
ArXivPDFHTML

Papers citing "Hyperparameter Ensembles for Robustness and Uncertainty Quantification"

50 / 134 papers shown
Title
Classifier Ensemble for Efficient Uncertainty Calibration of Deep Neural Networks for Image Classification
Classifier Ensemble for Efficient Uncertainty Calibration of Deep Neural Networks for Image Classification
Michael Schulze
Nikolas Ebert
Laurenz Reichardt
Oliver Wasenmüller
UQCV
42
0
0
20 Jan 2025
Stein Variational Newton Neural Network Ensembles
Stein Variational Newton Neural Network Ensembles
Klemens Flöge
Mohammed Abdul Moeed
Vincent Fortuin
BDL
UQCV
37
0
0
04 Nov 2024
Ctrl-U: Robust Conditional Image Generation via Uncertainty-aware Reward Modeling
Ctrl-U: Robust Conditional Image Generation via Uncertainty-aware Reward Modeling
Guiyu Zhang
Huan-ang Gao
Zijian Jiang
Hao Zhao
Zhedong Zheng
EGVM
46
6
0
15 Oct 2024
Boosting Deep Ensembles with Learning Rate Tuning
Boosting Deep Ensembles with Learning Rate Tuning
Hongpeng Jin
Yanzhao Wu
21
0
0
10 Oct 2024
Dynamic Post-Hoc Neural Ensemblers
Dynamic Post-Hoc Neural Ensemblers
Sebastian Pineda Arango
Maciej Janowski
Lennart Purucker
Arber Zela
Frank Hutter
Josif Grabocka
UQCV
36
0
0
06 Oct 2024
LiRA: Light-Robust Adversary for Model-based Reinforcement Learning in Real World
LiRA: Light-Robust Adversary for Model-based Reinforcement Learning in Real World
Taisuke Kobayashi
68
2
0
29 Sep 2024
Scalable Ensemble Diversification for OOD Generalization and Detection
Scalable Ensemble Diversification for OOD Generalization and Detection
Alexander Rubinstein
Luca Scimeca
Damien Teney
Seong Joon Oh
BDL
OOD
353
1
0
25 Sep 2024
Quantification of total uncertainty in the physics-informed
  reconstruction of CVSim-6 physiology
Quantification of total uncertainty in the physics-informed reconstruction of CVSim-6 physiology
Mario De Florio
Zongren Zou
Daniele E. Schiavazzi
George Karniadakis
26
3
0
13 Aug 2024
Low-Cost Self-Ensembles Based on Multi-Branch Transformation and Grouped
  Convolution
Low-Cost Self-Ensembles Based on Multi-Branch Transformation and Grouped Convolution
Hojung Lee
Jong-Seok Lee
3DV
35
1
0
05 Aug 2024
Network Fission Ensembles for Low-Cost Self-Ensembles
Network Fission Ensembles for Low-Cost Self-Ensembles
Hojung Lee
Jong-Seok Lee
UQCV
54
0
0
05 Aug 2024
LoRA-Ensemble: Efficient Uncertainty Modelling for Self-attention
  Networks
LoRA-Ensemble: Efficient Uncertainty Modelling for Self-attention Networks
Michelle Halbheer
Dominik J. Mühlematter
Alexander Becker
Dominik Narnhofer
Helge Aasen
Konrad Schindler
Mehmet Özgür Türkoglu
UQCV
30
1
0
23 May 2024
Application of Deep Learning Methods to Processing of Noisy Medical
  Video Data
Application of Deep Learning Methods to Processing of Noisy Medical Video Data
Danil Afonchikov
E. Kornaeva
Irina Makovik
Alexey Kornaev
23
0
0
16 Apr 2024
Diverse Randomized Value Functions: A Provably Pessimistic Approach for
  Offline Reinforcement Learning
Diverse Randomized Value Functions: A Provably Pessimistic Approach for Offline Reinforcement Learning
Xudong Yu
Chenjia Bai
Hongyi Guo
Changhong Wang
Zhen Wang
OffRL
37
0
0
09 Apr 2024
Diversity-Aware Agnostic Ensemble of Sharpness Minimizers
Diversity-Aware Agnostic Ensemble of Sharpness Minimizers
Anh-Vu Bui
Vy Vo
Tung Pham
Dinh Q. Phung
Trung Le
FedML
UQCV
29
1
0
19 Mar 2024
Uncertainty Quantification for Forward and Inverse Problems of PDEs via
  Latent Global Evolution
Uncertainty Quantification for Forward and Inverse Problems of PDEs via Latent Global Evolution
Tailin Wu
W. Neiswanger
Hongtao Zheng
Stefano Ermon
J. Leskovec
AI4CE
11
3
0
13 Feb 2024
SAE: Single Architecture Ensemble Neural Networks
SAE: Single Architecture Ensemble Neural Networks
Martin Ferianc
Hongxiang Fan
Miguel R. D. Rodrigues
UQCV
10
0
0
09 Feb 2024
How Good is a Single Basin?
How Good is a Single Basin?
Kai Lion
Lorenzo Noci
Thomas Hofmann
Gregor Bachmann
UQCV
23
2
0
05 Feb 2024
Inadequacy of common stochastic neural networks for reliable clinical
  decision support
Inadequacy of common stochastic neural networks for reliable clinical decision support
Adrian Lindenmeyer
Malte Blattmann
S. Franke
Thomas Neumuth
Daniel Schneider
BDL
25
1
0
24 Jan 2024
On Task Performance and Model Calibration with Supervised and
  Self-Ensembled In-Context Learning
On Task Performance and Model Calibration with Supervised and Self-Ensembled In-Context Learning
Chengzu Li
Han Zhou
Goran Glavavs
Anna Korhonen
Ivan Vulić
19
11
0
21 Dec 2023
Learning to Compose SuperWeights for Neural Parameter Allocation Search
Learning to Compose SuperWeights for Neural Parameter Allocation Search
Piotr Teterwak
Soren Nelson
Nikoli Dryden
D. Bashkirova
Kate Saenko
Bryan A. Plummer
25
1
0
03 Dec 2023
Uncertainty Quantification in Neural-Network Based Pain Intensity
  Estimation
Uncertainty Quantification in Neural-Network Based Pain Intensity Estimation
Burcu Ozek
Zhenyuan Lu
S. Radhakrishnan
S. Kamarthi
20
2
0
14 Nov 2023
A Hierarchical Spatial Transformer for Massive Point Samples in
  Continuous Space
A Hierarchical Spatial Transformer for Massive Point Samples in Continuous Space
Wenchong He
Zhe Jiang
Tingsong Xiao
Zelin Xu
Shigang Chen
Ronald Fick
Miles Medina
Christine Angelini
10
16
0
08 Nov 2023
Sensitivity-Aware Amortized Bayesian Inference
Sensitivity-Aware Amortized Bayesian Inference
Lasse Elsemüller
Hans Olischläger
Marvin Schmitt
Paul-Christian Burkner
Ullrich Kothe
Stefan T. Radev
23
7
0
17 Oct 2023
United We Stand: Using Epoch-wise Agreement of Ensembles to Combat
  Overfit
United We Stand: Using Epoch-wise Agreement of Ensembles to Combat Overfit
Uri Stern
Daniel Shwartz
D. Weinshall
33
1
0
17 Oct 2023
Something for (almost) nothing: Improving deep ensemble calibration
  using unlabeled data
Something for (almost) nothing: Improving deep ensemble calibration using unlabeled data
Konstantinos Pitas
Julyan Arbel
BDL
UQCV
FedML
29
0
0
04 Oct 2023
Deterministic Langevin Unconstrained Optimization with Normalizing Flows
Deterministic Langevin Unconstrained Optimization with Normalizing Flows
James M. Sullivan
U. Seljak
24
0
0
01 Oct 2023
LoRA ensembles for large language model fine-tuning
LoRA ensembles for large language model fine-tuning
Xi Wang
Laurence Aitchison
Maja Rudolph
UQCV
23
33
0
29 Sep 2023
Adapt then Unlearn: Exploring Parameter Space Semantics for Unlearning in Generative Adversarial Networks
Adapt then Unlearn: Exploring Parameter Space Semantics for Unlearning in Generative Adversarial Networks
Piyush Tiwary
Atri Guha
Subhodip Panda
Prathosh A.P.
MU
GAN
55
7
0
25 Sep 2023
Flexible Visual Recognition by Evidential Modeling of Confusion and
  Ignorance
Flexible Visual Recognition by Evidential Modeling of Confusion and Ignorance
Lei Fan
Bo Liu
Haoxiang Li
Ying Wu
Gang Hua
14
4
0
14 Sep 2023
Multiclass Alignment of Confidence and Certainty for Network Calibration
Multiclass Alignment of Confidence and Certainty for Network Calibration
Vinith Kugathasan
M. H. Khan
UQCV
14
1
0
06 Sep 2023
Uncertainty Quantification for Image-based Traffic Prediction across
  Cities
Uncertainty Quantification for Image-based Traffic Prediction across Cities
Alexander Timans
Nina Wiedemann
Nishant Kumar
Ye Hong
Martin Raubal
18
1
0
11 Aug 2023
Likelihood-ratio-based confidence intervals for neural networks
Likelihood-ratio-based confidence intervals for neural networks
Laurens Sluijterman
Eric Cator
Tom Heskes
UQCV
30
0
0
04 Aug 2023
Fisher-Weighted Merge of Contrastive Learning Models in Sequential
  Recommendation
Fisher-Weighted Merge of Contrastive Learning Models in Sequential Recommendation
Jung Hyun Ryu
Jaeheyoung Jeon
Jewoong Cho
Myung-joo Kang
MoMe
11
1
0
05 Jul 2023
Uncertainty Estimation for Molecules: Desiderata and Methods
Uncertainty Estimation for Molecules: Desiderata and Methods
Tom Wollschlager
Nicholas Gao
Bertrand Charpentier
Mohamed Amine Ketata
Stephan Günnemann
21
9
0
20 Jun 2023
Multiclass Confidence and Localization Calibration for Object Detection
Multiclass Confidence and Localization Calibration for Object Detection
Bimsara Pathiraja
Malitha Gunawardhana
M. H. Khan
UQCV
34
15
0
14 Jun 2023
Synthetic data, real errors: how (not) to publish and use synthetic data
Synthetic data, real errors: how (not) to publish and use synthetic data
B. V. Breugel
Zhaozhi Qian
M. Schaar
SyDa
57
28
0
16 May 2023
Image retrieval outperforms diffusion models on data augmentation
Image retrieval outperforms diffusion models on data augmentation
Max F. Burg
F. Wenzel
Dominik Zietlow
Max Horn
Osama Makansi
Francesco Locatello
Chris Russell
VLM
DiffM
37
16
0
20 Apr 2023
Gradient-based Uncertainty Attribution for Explainable Bayesian Deep
  Learning
Gradient-based Uncertainty Attribution for Explainable Bayesian Deep Learning
Hanjing Wang
D. Joshi
Shiqiang Wang
Q. Ji
UQCV
BDL
14
6
0
10 Apr 2023
Deep Anti-Regularized Ensembles provide reliable out-of-distribution
  uncertainty quantification
Deep Anti-Regularized Ensembles provide reliable out-of-distribution uncertainty quantification
Antoine de Mathelin
Francois Deheeger
Mathilde Mougeot
Nicolas Vayatis
OOD
UQCV
14
2
0
08 Apr 2023
Uncertainty-inspired Open Set Learning for Retinal Anomaly
  Identification
Uncertainty-inspired Open Set Learning for Retinal Anomaly Identification
Meng Wang
Tian Lin
Lianyu Wang
Aidi Lin
K. Zou
...
Y. Liu
C. Pang
Xinjian Chen
Haoyu Chen
H. Fu
82
35
0
08 Apr 2023
A Survey of Historical Learning: Learning Models with Learning History
A Survey of Historical Learning: Learning Models with Learning History
Xiang Li
Ge Wu
Lingfeng Yang
Wenzhe Wang
Renjie Song
Jian Yang
MU
AI4TS
23
2
0
23 Mar 2023
Bayesian Quadrature for Neural Ensemble Search
Bayesian Quadrature for Neural Ensemble Search
Saad Hamid
Xingchen Wan
Martin Jørgensen
Binxin Ru
Michael A. Osborne
BDL
UQCV
28
1
0
15 Mar 2023
Deep incremental learning models for financial temporal tabular datasets
  with distribution shifts
Deep incremental learning models for financial temporal tabular datasets with distribution shifts
Thomas Wong
Mauricio Barahona
OOD
AIFin
AI4TS
18
0
0
14 Mar 2023
Multi-Symmetry Ensembles: Improving Diversity and Generalization via
  Opposing Symmetries
Multi-Symmetry Ensembles: Improving Diversity and Generalization via Opposing Symmetries
Charlotte Loh
Seung-Jun Han
Shivchander Sudalairaj
Rumen Dangovski
Kai Xu
F. Wenzel
Marin Soljacic
Akash Srivastava
UQCV
39
1
0
04 Mar 2023
Toward Robust Uncertainty Estimation with Random Activation Functions
Toward Robust Uncertainty Estimation with Random Activation Functions
Y. Stoyanova
Soroush Ghandi
M. Tavakol
UQCV
13
2
0
28 Feb 2023
A Survey on Uncertainty Quantification Methods for Deep Learning
A Survey on Uncertainty Quantification Methods for Deep Learning
Wenchong He
Zhe Jiang
Tingsong Xiao
Zelin Xu
Yukun Li
BDL
UQCV
AI4CE
19
18
0
26 Feb 2023
Pushing the Accuracy-Group Robustness Frontier with Introspective
  Self-play
Pushing the Accuracy-Group Robustness Frontier with Introspective Self-play
J. Liu
Krishnamurthy Dvijotham
Jihyeon Janel Lee
Quan Yuan
Martin Strobel
Balaji Lakshminarayanan
Deepak Ramachandran
21
5
0
11 Feb 2023
Confidence-based Reliable Learning under Dual Noises
Confidence-based Reliable Learning under Dual Noises
Peng Cui
Yang Yue
Zhijie Deng
Jun Zhu
NoLa
31
8
0
10 Feb 2023
Generalized Uncertainty of Deep Neural Networks: Taxonomy and
  Applications
Generalized Uncertainty of Deep Neural Networks: Taxonomy and Applications
Chengyu Dong
OOD
UQCV
BDL
AI4CE
24
0
0
02 Feb 2023
Pathologies of Predictive Diversity in Deep Ensembles
Pathologies of Predictive Diversity in Deep Ensembles
Taiga Abe
E. Kelly Buchanan
Geoff Pleiss
John P. Cunningham
UQCV
38
13
0
01 Feb 2023
123
Next