Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.13554
Cited By
Normalized Loss Functions for Deep Learning with Noisy Labels
24 June 2020
Xingjun Ma
Hanxun Huang
Yisen Wang
Simone Romano
S. Erfani
James Bailey
NoLa
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Normalized Loss Functions for Deep Learning with Noisy Labels"
50 / 75 papers shown
Title
Mitigating Spurious Correlations with Causal Logit Perturbation
Xiaoling Zhou
Wei Ye
Rui Xie
Shikun Zhang
CML
27
0
0
21 May 2025
Enhanced Sample Selection with Confidence Tracking: Identifying Correctly Labeled yet Hard-to-Learn Samples in Noisy Data
Weiran Pan
Wei Wei
Feida Zhu
Yong Deng
NoLa
265
0
0
24 Apr 2025
Hide and Seek in Noise Labels: Noise-Robust Collaborative Active Learning with LLM-Powered Assistance
Bo Yuan
Yulin Chen
Yin Zhang
Wei Jiang
NoLa
47
6
0
03 Apr 2025
An Inclusive Theoretical Framework of Robust Supervised Contrastive Loss against Label Noise
Jingyi Cui
Yi-Ge Zhang
Hengyu Liu
Yisen Wang
NoLa
58
0
0
03 Jan 2025
Learning Causal Transition Matrix for Instance-dependent Label Noise
Jiahui Li
Tai-wei Chang
Kun Kuang
Ximing Li
Long Chen
Zhiqiang Zhang
NoLa
CML
301
0
0
18 Dec 2024
Combating Semantic Contamination in Learning with Label Noise
Wenxiao Fan
Kan Li
NoLa
291
0
0
16 Dec 2024
An Embedding is Worth a Thousand Noisy Labels
Francesco Di Salvo
Sebastian Doerrich
Ines Rieger
Christian Ledig
NoLa
75
0
0
26 Aug 2024
Boosting Single Positive Multi-label Classification with Generalized Robust Loss
Yanxi Chen
Chunxiao Li
Xinyang Dai
Jinhuan Li
Weiyu Sun
Yiming Wang
Renyuan Zhang
Tinghe Zhang
Bo Wang
42
0
0
06 May 2024
On the use of Silver Standard Data for Zero-shot Classification Tasks in Information Extraction
Jianwei Wang
Tianyin Wang
Ziqian Zeng
60
1
0
28 Feb 2024
Overcoming Label Noise for Source-free Unsupervised Video Domain Adaptation
A. Dasgupta
C. V. Jawahar
Karteek Alahari
TTA
VLM
31
10
0
30 Nov 2023
Are Ensembles Getting Better all the Time?
Pierre-Alexandre Mattei
Damien Garreau
OOD
FedML
53
1
0
29 Nov 2023
Understanding and Mitigating the Label Noise in Pre-training on Downstream Tasks
Hao Chen
Jindong Wang
Ankit Shah
Ran Tao
Hongxin Wei
Berfin cSimcsek
Masashi Sugiyama
Bhiksha Raj
49
26
0
29 Sep 2023
Channel-Wise Contrastive Learning for Learning with Noisy Labels
Hui-Sung Kang
Sheng Liu
Huaxi Huang
Tongliang Liu
NoLa
47
0
0
14 Aug 2023
Learning to Segment from Noisy Annotations: A Spatial Correction Approach
Jiacheng Yao
Yikai Zhang
Songzhu Zheng
Mayank Goswami
Prateek Prasanna
Chao Chen
43
15
0
21 Jul 2023
GenKL: An Iterative Framework for Resolving Label Ambiguity and Label Non-conformity in Web Images Via a New Generalized KL Divergence
Xia Huang
Kai Fong Ernest Chong
42
2
0
19 Jul 2023
Validation of the Practicability of Logical Assessment Formula for Evaluations with Inaccurate Ground-Truth Labels
Yongquan Yang
Hong Bu
31
0
0
06 Jul 2023
MILD: Modeling the Instance Learning Dynamics for Learning with Noisy Labels
Chuanyan Hu
Shipeng Yan
Zhitong Gao
Xuming He
NoLa
36
4
0
20 Jun 2023
FedNoisy: Federated Noisy Label Learning Benchmark
Siqi Liang
Jintao Huang
Junyuan Hong
Dun Zeng
Jiayu Zhou
Zenglin Xu
FedML
45
7
0
20 Jun 2023
Instance-dependent Noisy-label Learning with Graphical Model Based Noise-rate Estimation
Arpit Garg
Cuong C. Nguyen
Rafael Felix
Thanh-Toan Do
G. Carneiro
NoLa
41
1
0
31 May 2023
Mitigating Label Noise through Data Ambiguation
Julian Lienen
Eyke Hüllermeier
NoLa
32
7
0
23 May 2023
Imprecise Label Learning: A Unified Framework for Learning with Various Imprecise Label Configurations
Hao Chen
Ankit Shah
Jindong Wang
R. Tao
Yidong Wang
Xingxu Xie
Masashi Sugiyama
Rita Singh
Bhiksha Raj
45
12
0
22 May 2023
Dynamics-Aware Loss for Learning with Label Noise
Xiu-Chuan Li
Xiaobo Xia
Fei Zhu
Tongliang Liu
Xu-Yao Zhang
Cheng-Lin Liu
NoLa
AI4CE
37
6
0
21 Mar 2023
Guiding Pseudo-labels with Uncertainty Estimation for Source-free Unsupervised Domain Adaptation
Mattia Litrico
Alessio Del Bue
Pietro Morerio
UQCV
44
59
0
07 Mar 2023
Latent Class-Conditional Noise Model
Jiangchao Yao
Bo Han
Zhihan Zhou
Ya Zhang
Ivor W. Tsang
NoLa
BDL
33
8
0
19 Feb 2023
Smoothly Giving up: Robustness for Simple Models
Tyler Sypherd
Nathan Stromberg
Richard Nock
Visar Berisha
Lalitha Sankar
33
1
0
17 Feb 2023
A Generalized Surface Loss for Reducing the Hausdorff Distance in Medical Imaging Segmentation
A. Celaya
B. Rivière
David T. Fuentes
MedIm
33
8
0
08 Feb 2023
When Source-Free Domain Adaptation Meets Learning with Noisy Labels
L. Yi
Gezheng Xu
Pengcheng Xu
Jiaqi Li
Ruizhi Pu
Charles Ling
A. McLeod
Boyu Wang
27
39
0
31 Jan 2023
Improve Noise Tolerance of Robust Loss via Noise-Awareness
Kehui Ding
Jun Shu
Deyu Meng
Zongben Xu
NoLa
38
5
0
18 Jan 2023
Improving group robustness under noisy labels using predictive uncertainty
Dongpin Oh
Dae Lee
Jeunghyun Byun
Bonggun Shin
UQCV
25
3
0
14 Dec 2022
Leveraging Unlabeled Data to Track Memorization
Mahsa Forouzesh
Hanie Sedghi
Patrick Thiran
NoLa
TDI
39
4
0
08 Dec 2022
CrossSplit: Mitigating Label Noise Memorization through Data Splitting
Jihye Kim
A. Baratin
Yan Zhang
Simon Lacoste-Julien
NoLa
22
7
0
03 Dec 2022
Learning with Silver Standard Data for Zero-shot Relation Extraction
Tianyi Wang
Jianwei Wang
Ziqian Zeng
39
2
0
25 Nov 2022
When Noisy Labels Meet Long Tail Dilemmas: A Representation Calibration Method
Manyi Zhang
Xuyang Zhao
Jun Yao
Chun Yuan
Weiran Huang
49
20
0
20 Nov 2022
Robust Training of Graph Neural Networks via Noise Governance
Siyi Qian
Haochao Ying
Renjun Hu
Jingbo Zhou
Jintai Chen
Danny Chen
Jian Wu
NoLa
43
34
0
12 Nov 2022
DC-Check: A Data-Centric AI checklist to guide the development of reliable machine learning systems
Nabeel Seedat
F. Imrie
M. Schaar
32
12
0
09 Nov 2022
Tackling Instance-Dependent Label Noise with Dynamic Distribution Calibration
Manyi Zhang
Yuxin Ren
Zihao Wang
C. Yuan
31
3
0
11 Oct 2022
Weakly Supervised Medical Image Segmentation With Soft Labels and Noise Robust Loss
B. Felfeliyan
A. Hareendranathan
G. Kuntze
S. Wichuk
Nils D. Forkert
Jacob L. Jaremko
J. Ronsky
NoLa
46
2
0
16 Sep 2022
Instance-Dependent Noisy Label Learning via Graphical Modelling
Arpit Garg
Cuong C. Nguyen
Rafael Felix
Thanh-Toan Do
G. Carneiro
NoLa
39
27
0
02 Sep 2022
ProSelfLC: Progressive Self Label Correction Towards A Low-Temperature Entropy State
Xinshao Wang
Yang Hua
Elyor Kodirov
S. Mukherjee
David Clifton
N. Robertson
35
6
0
30 Jun 2022
Detecting Label Errors by using Pre-Trained Language Models
Derek Chong
Jenny Hong
Christopher D. Manning
NoLa
66
21
0
25 May 2022
Federated Learning with Noisy User Feedback
Rahul Sharma
Anil Ramakrishna
Ansel MacLaughlin
Anna Rumshisky
Jimit Majmudar
Clement Chung
Salman Avestimehr
Rahul Gupta
FedML
26
10
0
06 May 2022
SELC: Self-Ensemble Label Correction Improves Learning with Noisy Labels
Yangdi Lu
Wenbo He
NoLa
40
39
0
02 May 2022
Towards Robust Adaptive Object Detection under Noisy Annotations
Xinyu Liu
Wuyang Li
Qiushi Yang
Baopu Li
Yixuan Yuan
24
29
0
06 Apr 2022
Dual Temperature Helps Contrastive Learning Without Many Negative Samples: Towards Understanding and Simplifying MoCo
Chaoning Zhang
Kang Zhang
T. Pham
Axi Niu
Zhinan Qiao
Chang D. Yoo
In So Kweon
26
54
0
30 Mar 2022
Scalable Penalized Regression for Noise Detection in Learning with Noisy Labels
Yikai Wang
Xinwei Sun
Yanwei Fu
NoLa
37
23
0
15 Mar 2022
Robust Training under Label Noise by Over-parameterization
Sheng Liu
Zhihui Zhu
Qing Qu
Chong You
NoLa
OOD
34
106
0
28 Feb 2022
FUN-SIS: a Fully UNsupervised approach for Surgical Instrument Segmentation
Luca Sestini
Benoit Rosa
Elena De Momi
G. Ferrigno
N. Padoy
29
35
0
16 Feb 2022
Backdoor Defense via Decoupling the Training Process
Kunzhe Huang
Yiming Li
Baoyuan Wu
Zhan Qin
Kui Ren
AAML
FedML
29
187
0
05 Feb 2022
SSR: An Efficient and Robust Framework for Learning with Unknown Label Noise
Chen Feng
Georgios Tzimiropoulos
Ioannis Patras
NoLa
29
18
0
22 Nov 2021
Constrained Instance and Class Reweighting for Robust Learning under Label Noise
Abhishek Kumar
Ehsan Amid
NoLa
35
19
0
09 Nov 2021
1
2
Next