Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.13198
Cited By
Spectral Bias and Task-Model Alignment Explain Generalization in Kernel Regression and Infinitely Wide Neural Networks
23 June 2020
Abdulkadir Canatar
Blake Bordelon
Cengiz Pehlevan
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Spectral Bias and Task-Model Alignment Explain Generalization in Kernel Regression and Infinitely Wide Neural Networks"
39 / 39 papers shown
Title
Generalization through variance: how noise shapes inductive biases in diffusion models
John J. Vastola
DiffM
185
2
0
16 Apr 2025
On the similarity of bandwidth-tuned quantum kernels and classical kernels
Roberto Flórez Ablan
M. Roth
Jan Schnabel
60
2
0
07 Mar 2025
Estimating the Spectral Moments of the Kernel Integral Operator from Finite Sample Matrices
Chanwoo Chun
SueYeon Chung
Daniel D. Lee
31
1
0
23 Oct 2024
Breaking Neural Network Scaling Laws with Modularity
Akhilan Boopathy
Sunshine Jiang
William Yue
Jaedong Hwang
Abhiram Iyer
Ila Fiete
OOD
41
2
0
09 Sep 2024
Overfitting Behaviour of Gaussian Kernel Ridgeless Regression: Varying Bandwidth or Dimensionality
Marko Medvedev
Gal Vardi
Nathan Srebro
70
3
0
05 Sep 2024
Parameter-Efficient Fine-Tuning for Continual Learning: A Neural Tangent Kernel Perspective
Jingren Liu
Zhong Ji
YunLong Yu
Jiale Cao
Yanwei Pang
Jungong Han
Xuelong Li
CLL
42
5
0
24 Jul 2024
When does compositional structure yield compositional generalization? A kernel theory
Samuel Lippl
Kim Stachenfeld
NAI
CoGe
73
5
0
26 May 2024
Dissecting the Interplay of Attention Paths in a Statistical Mechanics Theory of Transformers
Lorenzo Tiberi
Francesca Mignacco
Kazuki Irie
H. Sompolinsky
44
6
0
24 May 2024
NTK-Guided Few-Shot Class Incremental Learning
Jingren Liu
Zhong Ji
Yanwei Pang
YunLong Yu
CLL
39
3
0
19 Mar 2024
Flat Minima in Linear Estimation and an Extended Gauss Markov Theorem
Simon Segert
32
0
0
18 Nov 2023
Modify Training Directions in Function Space to Reduce Generalization Error
Yi Yu
Wenlian Lu
Boyu Chen
27
0
0
25 Jul 2023
Higher-order topological kernels via quantum computation
Massimiliano Incudini
F. Martini
Alessandra Di Pierro
22
1
0
14 Jul 2023
Sparsity-depth Tradeoff in Infinitely Wide Deep Neural Networks
Chanwoo Chun
Daniel D. Lee
BDL
35
2
0
17 May 2023
Do deep neural networks have an inbuilt Occam's razor?
Chris Mingard
Henry Rees
Guillermo Valle Pérez
A. Louis
UQCV
BDL
21
16
0
13 Apr 2023
On the Stepwise Nature of Self-Supervised Learning
James B. Simon
Maksis Knutins
Liu Ziyin
Daniel Geisz
Abraham J. Fetterman
Joshua Albrecht
SSL
37
30
0
27 Mar 2023
Analyzing Convergence in Quantum Neural Networks: Deviations from Neural Tangent Kernels
Xuchen You
Shouvanik Chakrabarti
Boyang Chen
Xiaodi Wu
34
10
0
26 Mar 2023
Bayes-optimal Learning of Deep Random Networks of Extensive-width
Hugo Cui
Florent Krzakala
Lenka Zdeborová
BDL
20
35
0
01 Feb 2023
A Solvable Model of Neural Scaling Laws
A. Maloney
Daniel A. Roberts
J. Sully
36
51
0
30 Oct 2022
Automatic and effective discovery of quantum kernels
Massimiliano Incudini
Daniele Lizzio Bosco
F. Martini
Michele Grossi
Giuseppe Serra
Alessandra Di Pierro
31
4
0
22 Sep 2022
On the Activation Function Dependence of the Spectral Bias of Neural Networks
Q. Hong
Jonathan W. Siegel
Qinyan Tan
Jinchao Xu
34
23
0
09 Aug 2022
Benign, Tempered, or Catastrophic: A Taxonomy of Overfitting
Neil Rohit Mallinar
James B. Simon
Amirhesam Abedsoltan
Parthe Pandit
M. Belkin
Preetum Nakkiran
24
37
0
14 Jul 2022
Target alignment in truncated kernel ridge regression
Arash A. Amini
R. Baumgartner
Dai Feng
14
3
0
28 Jun 2022
Overcoming the Spectral Bias of Neural Value Approximation
Ge Yang
Anurag Ajay
Pulkit Agrawal
34
25
0
09 Jun 2022
Self-Consistent Dynamical Field Theory of Kernel Evolution in Wide Neural Networks
Blake Bordelon
Cengiz Pehlevan
MLT
40
78
0
19 May 2022
Sharp Asymptotics of Kernel Ridge Regression Beyond the Linear Regime
Hong Hu
Yue M. Lu
53
15
0
13 May 2022
Contrasting random and learned features in deep Bayesian linear regression
Jacob A. Zavatone-Veth
William L. Tong
Cengiz Pehlevan
BDL
MLT
28
26
0
01 Mar 2022
Tight Convergence Rate Bounds for Optimization Under Power Law Spectral Conditions
Maksim Velikanov
Dmitry Yarotsky
9
6
0
02 Feb 2022
Separation of Scales and a Thermodynamic Description of Feature Learning in Some CNNs
Inbar Seroussi
Gadi Naveh
Zohar Ringel
33
50
0
31 Dec 2021
Learning Curves for Continual Learning in Neural Networks: Self-Knowledge Transfer and Forgetting
Ryo Karakida
S. Akaho
CLL
32
11
0
03 Dec 2021
Learning with convolution and pooling operations in kernel methods
Theodor Misiakiewicz
Song Mei
MLT
15
29
0
16 Nov 2021
Representation Learning via Quantum Neural Tangent Kernels
Junyu Liu
F. Tacchino
Jennifer R. Glick
Liang Jiang
Antonio Mezzacapo
24
60
0
08 Nov 2021
Neural Networks as Kernel Learners: The Silent Alignment Effect
Alexander B. Atanasov
Blake Bordelon
Cengiz Pehlevan
MLT
26
75
0
29 Oct 2021
Locality defeats the curse of dimensionality in convolutional teacher-student scenarios
Alessandro Favero
Francesco Cagnetta
M. Wyart
30
31
0
16 Jun 2021
A self consistent theory of Gaussian Processes captures feature learning effects in finite CNNs
Gadi Naveh
Zohar Ringel
SSL
MLT
36
31
0
08 Jun 2021
The Inductive Bias of Quantum Kernels
Jonas M. Kubler
Simon Buchholz
Bernhard Schölkopf
19
119
0
07 Jun 2021
Explaining Neural Scaling Laws
Yasaman Bahri
Ethan Dyer
Jared Kaplan
Jaehoon Lee
Utkarsh Sharma
27
250
0
12 Feb 2021
Double Trouble in Double Descent : Bias and Variance(s) in the Lazy Regime
Stéphane dÁscoli
Maria Refinetti
Giulio Biroli
Florent Krzakala
93
152
0
02 Mar 2020
Spectrum Dependent Learning Curves in Kernel Regression and Wide Neural Networks
Blake Bordelon
Abdulkadir Canatar
Cengiz Pehlevan
146
201
0
07 Feb 2020
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
264
4,489
0
23 Jan 2020
1