ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.13132
  4. Cited By
On Counterfactual Explanations under Predictive Multiplicity

On Counterfactual Explanations under Predictive Multiplicity

23 June 2020
Martin Pawelczyk
Klaus Broelemann
Gjergji Kasneci
ArXivPDFHTML

Papers citing "On Counterfactual Explanations under Predictive Multiplicity"

18 / 18 papers shown
Title
From Search To Sampling: Generative Models For Robust Algorithmic Recourse
From Search To Sampling: Generative Models For Robust Algorithmic Recourse
Prateek Garg
Lokesh Nagalapatti
Sunita Sarawagi
31
0
0
12 May 2025
The Curious Case of Arbitrariness in Machine Learning
Prakhar Ganesh
Afaf Taik
G. Farnadi
59
2
0
28 Jan 2025
Robust Counterfactual Explanations under Model Multiplicity Using Multi-Objective Optimization
Robust Counterfactual Explanations under Model Multiplicity Using Multi-Objective Optimization
Keita Kinjo
34
1
0
10 Jan 2025
Time Can Invalidate Algorithmic Recourse
Time Can Invalidate Algorithmic Recourse
Giovanni De Toni
Stefano Teso
Bruno Lepri
Andrea Passerini
37
0
0
10 Oct 2024
Predictive Churn with the Set of Good Models
Predictive Churn with the Set of Good Models
J. Watson-Daniels
Flavio du Pin Calmon
Alexander DÁmour
Carol Xuan Long
David C. Parkes
Berk Ustun
83
7
0
12 Feb 2024
On the Connection between Game-Theoretic Feature Attributions and
  Counterfactual Explanations
On the Connection between Game-Theoretic Feature Attributions and Counterfactual Explanations
Emanuele Albini
Shubham Sharma
Saumitra Mishra
Danial Dervovic
Daniele Magazzeni
FAtt
46
2
0
13 Jul 2023
Cross-model Fairness: Empirical Study of Fairness and Ethics Under Model
  Multiplicity
Cross-model Fairness: Empirical Study of Fairness and Ethics Under Model Multiplicity
Kacper Sokol
Meelis Kull
J. Chan
Flora D. Salim
15
6
0
14 Mar 2022
Probabilistically Robust Recourse: Navigating the Trade-offs between
  Costs and Robustness in Algorithmic Recourse
Probabilistically Robust Recourse: Navigating the Trade-offs between Costs and Robustness in Algorithmic Recourse
Martin Pawelczyk
Teresa Datta
Johannes van-den-Heuvel
Gjergji Kasneci
Himabindu Lakkaraju
19
38
0
13 Mar 2022
Counterfactual Plans under Distributional Ambiguity
Counterfactual Plans under Distributional Ambiguity
N. Bui
D. Nguyen
Viet Anh Nguyen
54
24
0
29 Jan 2022
On the Robustness of Sparse Counterfactual Explanations to Adverse
  Perturbations
On the Robustness of Sparse Counterfactual Explanations to Adverse Perturbations
M. Virgolin
Saverio Fracaros
CML
26
36
0
22 Jan 2022
On the Adversarial Robustness of Causal Algorithmic Recourse
On the Adversarial Robustness of Causal Algorithmic Recourse
Ricardo Dominguez-Olmedo
Amir-Hossein Karimi
Bernhard Schölkopf
46
63
0
21 Dec 2021
Deep Neural Networks and Tabular Data: A Survey
Deep Neural Networks and Tabular Data: A Survey
V. Borisov
Tobias Leemann
Kathrin Seßler
Johannes Haug
Martin Pawelczyk
Gjergji Kasneci
LMTD
27
645
0
05 Oct 2021
A Causal Perspective on Meaningful and Robust Algorithmic Recourse
A Causal Perspective on Meaningful and Robust Algorithmic Recourse
Gunnar Konig
Timo Freiesleben
Moritz Grosse-Wentrup
27
16
0
16 Jul 2021
Counterfactual Explanations for Arbitrary Regression Models
Counterfactual Explanations for Arbitrary Regression Models
Thomas Spooner
Danial Dervovic
Jason Long
Jon Shepard
Jiahao Chen
Daniele Magazzeni
19
26
0
29 Jun 2021
Exploring Counterfactual Explanations Through the Lens of Adversarial
  Examples: A Theoretical and Empirical Analysis
Exploring Counterfactual Explanations Through the Lens of Adversarial Examples: A Theoretical and Empirical Analysis
Martin Pawelczyk
Chirag Agarwal
Shalmali Joshi
Sohini Upadhyay
Himabindu Lakkaraju
AAML
13
51
0
18 Jun 2021
Counterfactuals and Causability in Explainable Artificial Intelligence:
  Theory, Algorithms, and Applications
Counterfactuals and Causability in Explainable Artificial Intelligence: Theory, Algorithms, and Applications
Yu-Liang Chou
Catarina Moreira
P. Bruza
Chun Ouyang
Joaquim A. Jorge
CML
42
176
0
07 Mar 2021
Towards Robust and Reliable Algorithmic Recourse
Towards Robust and Reliable Algorithmic Recourse
Sohini Upadhyay
Shalmali Joshi
Himabindu Lakkaraju
22
108
0
26 Feb 2021
Issues with post-hoc counterfactual explanations: a discussion
Issues with post-hoc counterfactual explanations: a discussion
Thibault Laugel
Marie-Jeanne Lesot
Christophe Marsala
Marcin Detyniecki
CML
104
44
0
11 Jun 2019
1