Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.13114
Cited By
Fairness without Demographics through Adversarially Reweighted Learning
23 June 2020
Preethi Lahoti
Alex Beutel
Jilin Chen
Kang Lee
Flavien Prost
Nithum Thain
Xuezhi Wang
Ed H. Chi
FaML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Fairness without Demographics through Adversarially Reweighted Learning"
31 / 81 papers shown
Title
BARACK: Partially Supervised Group Robustness With Guarantees
N. Sohoni
Maziar Sanjabi
Nicolas Ballas
Aditya Grover
Shaoliang Nie
Hamed Firooz
Christopher Ré
OOD
24
24
0
31 Dec 2021
Measure and Improve Robustness in NLP Models: A Survey
Xuezhi Wang
Haohan Wang
Diyi Yang
139
131
0
15 Dec 2021
Data Collection and Quality Challenges in Deep Learning: A Data-Centric AI Perspective
Steven Euijong Whang
Yuji Roh
Hwanjun Song
Jae-Gil Lee
27
326
0
13 Dec 2021
Learning Invariant Representations with Missing Data
Mark Goldstein
J. Jacobsen
O. Chau
A. Saporta
A. Puli
Rajesh Ranganath
Andrew C. Miller
OOD
25
5
0
01 Dec 2021
Toward Learning Human-aligned Cross-domain Robust Models by Countering Misaligned Features
Haohan Wang
Zeyi Huang
Hanlin Zhang
Yong Jae Lee
Eric P. Xing
OOD
138
16
0
05 Nov 2021
Modeling Techniques for Machine Learning Fairness: A Survey
Mingyang Wan
Daochen Zha
Ninghao Liu
Na Zou
SyDa
FaML
34
36
0
04 Nov 2021
Sample Selection for Fair and Robust Training
Yuji Roh
Kangwook Lee
Steven Euijong Whang
Changho Suh
21
61
0
27 Oct 2021
Boosted CVaR Classification
Runtian Zhai
Chen Dan
A. Suggala
Zico Kolter
Pradeep Ravikumar
16
16
0
26 Oct 2021
Enhancing Model Robustness and Fairness with Causality: A Regularization Approach
Zhao Wang
Kai Shu
A. Culotta
OOD
21
14
0
03 Oct 2021
A survey on datasets for fairness-aware machine learning
Tai Le Quy
Arjun Roy
Vasileios Iosifidis
Wenbin Zhang
Eirini Ntoutsi
FaML
11
241
0
01 Oct 2021
A Fairness Analysis on Private Aggregation of Teacher Ensembles
Cuong Tran
M. H. Dinh
Kyle Beiter
Ferdinando Fioretto
21
12
0
17 Sep 2021
Balancing out Bias: Achieving Fairness Through Balanced Training
Xudong Han
Timothy Baldwin
Trevor Cohn
26
39
0
16 Sep 2021
Fairness without the sensitive attribute via Causal Variational Autoencoder
Vincent Grari
Sylvain Lamprier
Marcin Detyniecki
24
27
0
10 Sep 2021
Towards Out-Of-Distribution Generalization: A Survey
Jiashuo Liu
Zheyan Shen
Yue He
Xingxuan Zhang
Renzhe Xu
Han Yu
Peng Cui
CML
OOD
69
519
0
31 Aug 2021
A comparison of approaches to improve worst-case predictive model performance over patient subpopulations
Stephen R. Pfohl
Haoran Zhang
Yizhe Xu
Agata Foryciarz
Marzyeh Ghassemi
N. Shah
OOD
31
22
0
27 Aug 2021
Estimation of Fair Ranking Metrics with Incomplete Judgments
Ömer Kirnap
Fernando Diaz
Asia J. Biega
Michael D. Ekstrand
Ben Carterette
Emine Yilmaz
32
37
0
11 Aug 2021
Multiaccurate Proxies for Downstream Fairness
Emily Diana
Wesley Gill
Michael Kearns
K. Kenthapadi
Aaron Roth
Saeed Sharifi-Malvajerdi
35
21
0
09 Jul 2021
The Spotlight: A General Method for Discovering Systematic Errors in Deep Learning Models
G. dÉon
Jason dÉon
J. R. Wright
Kevin Leyton-Brown
33
74
0
01 Jul 2021
Out-of-distribution Generalization in the Presence of Nuisance-Induced Spurious Correlations
A. Puli
Lily H. Zhang
Eric K. Oermann
Rajesh Ranganath
OOD
OODD
27
48
0
29 Jun 2021
DORO: Distributional and Outlier Robust Optimization
Runtian Zhai
Chen Dan
J. Zico Kolter
Pradeep Ravikumar
33
60
0
11 Jun 2021
Measuring Model Fairness under Noisy Covariates: A Theoretical Perspective
Flavien Prost
Pranjal Awasthi
Nicholas Blumm
A. Kumthekar
Trevor Potter
Li Wei
Xuezhi Wang
Ed H. Chi
Jilin Chen
Alex Beutel
50
15
0
20 May 2021
Technical Challenges for Training Fair Neural Networks
Valeriia Cherepanova
V. Nanda
Micah Goldblum
John P. Dickerson
Tom Goldstein
FaML
25
22
0
12 Feb 2021
MIMIC-IF: Interpretability and Fairness Evaluation of Deep Learning Models on MIMIC-IV Dataset
Chuizheng Meng
Loc Trinh
Nan Xu
Yan Liu
24
30
0
12 Feb 2021
Through the Data Management Lens: Experimental Analysis and Evaluation of Fair Classification
Maliha Tashfia Islam
Anna Fariha
A. Meliou
Babak Salimi
FaML
30
25
0
18 Jan 2021
No Subclass Left Behind: Fine-Grained Robustness in Coarse-Grained Classification Problems
N. Sohoni
Jared A. Dunnmon
Geoffrey Angus
Albert Gu
Christopher Ré
30
243
0
25 Nov 2020
Minimax Group Fairness: Algorithms and Experiments
Emily Diana
Wesley Gill
Michael Kearns
K. Kenthapadi
Aaron Roth
FaML
FedML
22
23
0
05 Nov 2020
"What We Can't Measure, We Can't Understand": Challenges to Demographic Data Procurement in the Pursuit of Fairness
Mckane Andrus
Elena Spitzer
Jeffrey Brown
Alice Xiang
32
126
0
30 Oct 2020
Ethical Adversaries: Towards Mitigating Unfairness with Adversarial Machine Learning
Pieter Delobelle
Paul Temple
Gilles Perrouin
Benoit Frénay
P. Heymans
Bettina Berendt
AAML
FaML
27
14
0
14 May 2020
Robust Optimization for Fairness with Noisy Protected Groups
S. Wang
Wenshuo Guo
Harikrishna Narasimhan
Andrew Cotter
Maya R. Gupta
Michael I. Jordan
NoLa
27
118
0
21 Feb 2020
Improving fairness in machine learning systems: What do industry practitioners need?
Kenneth Holstein
Jennifer Wortman Vaughan
Hal Daumé
Miroslav Dudík
Hanna M. Wallach
FaML
HAI
195
742
0
13 Dec 2018
Learning Adversarially Fair and Transferable Representations
David Madras
Elliot Creager
T. Pitassi
R. Zemel
FaML
236
676
0
17 Feb 2018
Previous
1
2