ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.12921
  4. Cited By
Gaussian Processes for Surrogate Modeling of Discharged Fuel Nuclide
  Compositions

Gaussian Processes for Surrogate Modeling of Discharged Fuel Nuclide Compositions

23 June 2020
Antonio Figueroa
Malte Goettsche
ArXivPDFHTML

Papers citing "Gaussian Processes for Surrogate Modeling of Discharged Fuel Nuclide Compositions"

2 / 2 papers shown
Title
Inverse Uncertainty Quantification using the Modular Bayesian Approach
  based on Gaussian Process, Part 1: Theory
Inverse Uncertainty Quantification using the Modular Bayesian Approach based on Gaussian Process, Part 1: Theory
Xu Wu
T. Kozłowski
Hadi Meidani
K. Shirvan
43
100
0
05 Jan 2018
Fundamental concepts in the Cyclus nuclear fuel cycle simulation
  framework
Fundamental concepts in the Cyclus nuclear fuel cycle simulation framework
K. Huff
M. Gidden
R. Carlsen
R. Flanagan
M. McGarry
A. Opotowsky
E. Schneider
A. Scopatz
P. Wilson
21
44
0
11 Sep 2015
1