Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.12878
Cited By
Direct Feedback Alignment Scales to Modern Deep Learning Tasks and Architectures
23 June 2020
Julien Launay
Iacopo Poli
Franccois Boniface
Florent Krzakala
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Direct Feedback Alignment Scales to Modern Deep Learning Tasks and Architectures"
43 / 43 papers shown
Title
Benchmarking Predictive Coding Networks -- Made Simple
Luca Pinchetti
Chang Qi
Oleh Lokshyn
Gaspard Olivers
Cornelius Emde
...
Simon Frieder
Bayar I. Menzat
Rafal Bogacz
Thomas Lukasiewicz
Tommaso Salvatori
127
5
0
17 Feb 2025
Counter-Current Learning: A Biologically Plausible Dual Network Approach for Deep Learning
Chia-Hsiang Kao
Bharath Hariharan
34
1
0
30 Sep 2024
Is All Learning (Natural) Gradient Descent?
Lucas Shoji
Kenta Suzuki
Leo Kozachkov
28
1
0
24 Sep 2024
Self-Contrastive Forward-Forward Algorithm
Xing Chen
Dongshu Liu
Jérémie Laydevant
Julie Grollier
34
2
0
17 Sep 2024
Training Spiking Neural Networks via Augmented Direct Feedback Alignment
Yongbo Zhang
Katsuma Inoue
M. Nakajima
Toshikazu Hashimoto
Yasuo Kuniyoshi
Kohei Nakajima
30
0
0
12 Sep 2024
Online Pseudo-Zeroth-Order Training of Neuromorphic Spiking Neural Networks
Mingqing Xiao
Qingyan Meng
Zongpeng Zhang
D.K. He
Zhouchen Lin
32
0
0
17 Jul 2024
Training of Physical Neural Networks
Ali Momeni
Babak Rahmani
B. Scellier
Logan G. Wright
Peter L. McMahon
...
Julie Grollier
Andrea J. Liu
D. Psaltis
Andrea Alù
Romain Fleury
PINN
AI4CE
51
9
0
05 Jun 2024
A Review of Neuroscience-Inspired Machine Learning
Alexander Ororbia
A. Mali
Adam Kohan
Beren Millidge
Tommaso Salvatori
27
7
0
16 Feb 2024
Forward Direct Feedback Alignment for Online Gradient Estimates of Spiking Neural Networks
Florian Bacho
Dminique Chu
12
0
0
06 Feb 2024
Convergence guarantees for forward gradient descent in the linear regression model
Thijs Bos
Johannes Schmidt-Hieber
22
3
0
26 Sep 2023
Improving equilibrium propagation without weight symmetry through Jacobian homeostasis
Axel Laborieux
Friedemann Zenke
12
7
0
05 Sep 2023
Random Feedback Alignment Algorithms to train Neural Networks: Why do they Align?
Dominique F. Chu
Florian Bacho
ODL
17
0
0
04 Jun 2023
A General Framework for Interpretable Neural Learning based on Local Information-Theoretic Goal Functions
Abdullah Makkeh
Marcel Graetz
Andreas C. Schneider
David A. Ehrlich
V. Priesemann
Michael Wibral
44
1
0
03 Jun 2023
Implicit Regularization in Feedback Alignment Learning Mechanisms for Neural Networks
Zachary Robertson
Oluwasanmi Koyejo
23
0
0
02 Jun 2023
Block-local learning with probabilistic latent representations
David Kappel
Khaleelulla Khan Nazeer
Cabrel Teguemne Fokam
Christian Mayr
Anand Subramoney
24
4
0
24 May 2023
Learning with augmented target information: An alternative theory of Feedback Alignment
Huzi Cheng
Joshua W. Brown
CVBM
11
0
0
03 Apr 2023
Forward Learning with Top-Down Feedback: Empirical and Analytical Characterization
R. Srinivasan
Francesca Mignacco
M. Sorbaro
Maria Refinetti
A. Cooper
Gabriel Kreiman
Giorgia Dellaferrera
19
15
0
10 Feb 2023
Biologically Plausible Learning on Neuromorphic Hardware Architectures
Christopher Wolters
Brady Taylor
Edward Hanson
Xiaoxuan Yang
Ulf Schlichtmann
Yiran Chen
11
3
0
29 Dec 2022
Low-Variance Forward Gradients using Direct Feedback Alignment and Momentum
Florian Bacho
Dominique F. Chu
13
7
0
14 Dec 2022
Is Bio-Inspired Learning Better than Backprop? Benchmarking Bio Learning vs. Backprop
Manas Gupta
Sarthak Ketanbhai Modi
Hang Zhang
Joon Hei Lee
J. Lim
22
7
0
09 Dec 2022
Scaling Laws Beyond Backpropagation
Matthew J. Filipovich
Alessandro Cappelli
Daniel Hesslow
Julien Launay
19
3
0
26 Oct 2022
The Influence of Learning Rule on Representation Dynamics in Wide Neural Networks
Blake Bordelon
C. Pehlevan
41
22
0
05 Oct 2022
Holomorphic Equilibrium Propagation Computes Exact Gradients Through Finite Size Oscillations
Axel Laborieux
Friedemann Zenke
33
33
0
01 Sep 2022
Backpropagation at the Infinitesimal Inference Limit of Energy-Based Models: Unifying Predictive Coding, Equilibrium Propagation, and Contrastive Hebbian Learning
Beren Millidge
Yuhang Song
Tommaso Salvatori
Thomas Lukasiewicz
Rafal Bogacz
13
21
0
31 May 2022
A comparative study of back propagation and its alternatives on multilayer perceptrons
John F. Waldo
AAML
14
1
0
31 May 2022
Emergent organization of receptive fields in networks of excitatory and inhibitory neurons
Leon Lufkin
Ashish Puri
Ganlin Song
Xinyi Zhong
John D. Lafferty
6
1
0
26 May 2022
Physical Deep Learning with Biologically Plausible Training Method
M. Nakajima
Katsuma Inoue
Kenji Tanaka
Yasuo Kuniyoshi
Toshikazu Hashimoto
Kohei Nakajima
AI4CE
28
3
0
01 Apr 2022
How and When Random Feedback Works: A Case Study of Low-Rank Matrix Factorization
Shivam Garg
Santosh Vempala
20
3
0
17 Nov 2021
Silicon Photonic Architecture for Training Deep Neural Networks with Direct Feedback Alignment
M. Filipovich
Zhimu Guo
M. Al-Qadasi
Bicky A. Marquez
Hugh Morison
V. Sorger
Paul R. Prucnal
S. Shekhar
B. Shastri
20
52
0
12 Nov 2021
Convergence Analysis and Implicit Regularization of Feedback Alignment for Deep Linear Networks
M. Girotti
Ioannis Mitliagkas
Gauthier Gidel
14
1
0
20 Oct 2021
ROPUST: Improving Robustness through Fine-tuning with Photonic Processors and Synthetic Gradients
Alessandro Cappelli
Julien Launay
Laurent Meunier
Ruben Ohana
Iacopo Poli
AAML
16
4
0
06 Jul 2021
How to Train Your Wide Neural Network Without Backprop: An Input-Weight Alignment Perspective
Akhilan Boopathy
Ila Fiete
16
9
0
15 Jun 2021
Convergence and Alignment of Gradient Descent with Random Backpropagation Weights
Ganlin Song
Ruitu Xu
John D. Lafferty
ODL
46
21
0
10 Jun 2021
Credit Assignment Through Broadcasting a Global Error Vector
David G. Clark
L. F. Abbott
SueYeon Chung
17
23
0
08 Jun 2021
Photonic Differential Privacy with Direct Feedback Alignment
Ruben Ohana
H. M. Ruiz
Julien Launay
Alessandro Cappelli
Iacopo Poli
L. Ralaivola
A. Rakotomamonjy
14
8
0
07 Jun 2021
Deep physical neural networks enabled by a backpropagation algorithm for arbitrary physical systems
Logan G. Wright
Tatsuhiro Onodera
Martin M. Stein
Tianyu Wang
Darren T. Schachter
Zoey Hu
Peter L. McMahon
PINN
AI4CE
40
469
0
27 Apr 2021
Gradient-adjusted Incremental Target Propagation Provides Effective Credit Assignment in Deep Neural Networks
Sander Dalm
Nasir Ahmad
L. Ambrogioni
Marcel van Gerven
10
1
0
23 Feb 2021
Adversarial Robustness by Design through Analog Computing and Synthetic Gradients
Alessandro Cappelli
Ruben Ohana
Julien Launay
Laurent Meunier
Iacopo Poli
Florent Krzakala
AAML
54
13
0
06 Jan 2021
Hardware Beyond Backpropagation: a Photonic Co-Processor for Direct Feedback Alignment
Julien Launay
Iacopo Poli
Kilian Muller
Gustave Pariente
I. Carron
L. Daudet
Florent Krzakala
S. Gigan
MoE
15
18
0
11 Dec 2020
Align, then memorise: the dynamics of learning with feedback alignment
Maria Refinetti
Stéphane dÁscoli
Ruben Ohana
Sebastian Goldt
26
36
0
24 Nov 2020
Feed-Forward On-Edge Fine-tuning Using Static Synthetic Gradient Modules
R. Neven
Marian Verhelst
Tinne Tuytelaars
Toon Goedemé
8
1
0
21 Sep 2020
Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism
M. Shoeybi
M. Patwary
Raul Puri
P. LeGresley
Jared Casper
Bryan Catanzaro
MoE
245
1,821
0
17 Sep 2019
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
253
3,239
0
24 Nov 2016
1