ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.12773
  4. Cited By
Maximizing Submodular or Monotone Functions under Partition Matroid
  Constraints by Multi-objective Evolutionary Algorithms
v1v2 (latest)

Maximizing Submodular or Monotone Functions under Partition Matroid Constraints by Multi-objective Evolutionary Algorithms

23 June 2020
A. Do
Frank Neumann
ArXiv (abs)PDFHTML

Papers citing "Maximizing Submodular or Monotone Functions under Partition Matroid Constraints by Multi-objective Evolutionary Algorithms"

5 / 5 papers shown
Title
Drift Analysis
Drift Analysis
Johannes Lengler
35
16
0
04 Dec 2017
Maximizing Submodular or Monotone Approximately Submodular Functions by
  Multi-objective Evolutionary Algorithms
Maximizing Submodular or Monotone Approximately Submodular Functions by Multi-objective Evolutionary Algorithms
Chao Qian
Yang Yu
K. Tang
Xin Yao
Zhi Zhou
41
50
0
20 Nov 2017
Guarantees for Greedy Maximization of Non-submodular Functions with
  Applications
Guarantees for Greedy Maximization of Non-submodular Functions with Applications
Yatao Bian
J. M. Buhmann
Andreas Krause
Sebastian Tschiatschek
65
237
0
06 Mar 2017
Submodular meets Spectral: Greedy Algorithms for Subset Selection,
  Sparse Approximation and Dictionary Selection
Submodular meets Spectral: Greedy Algorithms for Subset Selection, Sparse Approximation and Dictionary Selection
Abhimanyu Das
David Kempe
202
484
0
19 Feb 2011
Efficient Minimization of Decomposable Submodular Functions
Efficient Minimization of Decomposable Submodular Functions
Peter Stobbe
Andreas Krause
87
124
0
26 Oct 2010
1