Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.12620
Cited By
A maximum-entropy approach to off-policy evaluation in average-reward MDPs
17 June 2020
N. Lazić
Dong Yin
Mehrdad Farajtabar
Nir Levine
Dilan Görür
Chris Harris
Dale Schuurmans
OffRL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"A maximum-entropy approach to off-policy evaluation in average-reward MDPs"
9 / 9 papers shown
Title
Imitation Learning in Discounted Linear MDPs without exploration assumptions
Luca Viano
Stratis Skoulakis
Volkan Cevher
55
5
0
03 May 2024
What can online reinforcement learning with function approximation benefit from general coverage conditions?
Fanghui Liu
Luca Viano
Volkan Cevher
OffRL
57
3
0
25 Apr 2023
Proximal Point Imitation Learning
Luca Viano
Angeliki Kamoutsi
Gergely Neu
Igor Krawczuk
Volkan Cevher
105
16
0
22 Sep 2022
Explaining Off-Policy Actor-Critic From A Bias-Variance Perspective
Ting-Han Fan
Peter J. Ramadge
CML
FAtt
OffRL
65
2
0
06 Oct 2021
Infinite-Horizon Offline Reinforcement Learning with Linear Function Approximation: Curse of Dimensionality and Algorithm
Lin Chen
B. Scherrer
Peter L. Bartlett
OffRL
213
16
0
17 Mar 2021
Non-asymptotic Confidence Intervals of Off-policy Evaluation: Primal and Dual Bounds
Yihao Feng
Ziyang Tang
Na Zhang
Qiang Liu
OffRL
73
14
0
09 Mar 2021
Average-Reward Off-Policy Policy Evaluation with Function Approximation
Shangtong Zhang
Yi Wan
R. Sutton
Shimon Whiteson
OffRL
73
31
0
08 Jan 2021
Sparse Feature Selection Makes Batch Reinforcement Learning More Sample Efficient
Botao Hao
Yaqi Duan
Tor Lattimore
Csaba Szepesvári
Mengdi Wang
OffRL
142
27
0
08 Nov 2020
Online Sparse Reinforcement Learning
Botao Hao
Tor Lattimore
Csaba Szepesvári
Mengdi Wang
OffRL
137
29
0
08 Nov 2020
1