Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.12483
Cited By
Convolutional-network models to predict wall-bounded turbulence from wall quantities
22 June 2020
L. Guastoni
A. Güemes
A. Ianiro
S. Discetti
P. Schlatter
Hossein Azizpour
R. Vinuesa
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Convolutional-network models to predict wall-bounded turbulence from wall quantities"
32 / 32 papers shown
Title
Stochastic Reconstruction of Gappy Lagrangian Turbulent Signals by Conditional Diffusion Models
Tianyi Li
Luca Biferale
F. Bonaccorso
M. Buzzicotti
Luca Centurioni
DiffM
53
3
0
31 Oct 2024
Additive-feature-attribution methods: a review on explainable artificial intelligence for fluid dynamics and heat transfer
Andres Cremades
S. Hoyas
Ricardo Vinuesa
FAtt
29
9
0
18 Sep 2024
Enhancing Graph U-Nets for Mesh-Agnostic Spatio-Temporal Flow Prediction
Sunwoong Yang
Ricardo Vinuesa
Namwoo Kang
AI4CE
49
4
0
06 Jun 2024
Stochastic Inference of Plate Bending from Heterogeneous Data: Physics-informed Gaussian Processes via Kirchhoff-Love Theory
I. Kavrakov
Gledson Rodrigo Tondo
Guido Morgenthal
AI4CE
57
1
0
21 May 2024
Prediction of flow and elastic stresses in a viscoelastic turbulent channel flow using convolutional neural networks
Arivazhagan G. Balasubramanian
Ricardo Vinuesa
O. Tammisola
26
0
0
22 Apr 2024
Synthetic Lagrangian Turbulence by Generative Diffusion Models
Tianyi Li
Luca Biferale
F. Bonaccorso
M. A. Scarpolini
M. Buzzicotti
DiffM
33
32
0
17 Jul 2023
Interpreting and generalizing deep learning in physics-based problems with functional linear models
Amirhossein Arzani
Lingxiao Yuan
P. Newell
Bei Wang
AI4CE
31
7
0
10 Jul 2023
Discovering Causal Relations and Equations from Data
Gustau Camps-Valls
Andreas Gerhardus
Urmi Ninad
Gherardo Varando
Georg Martius
E. Balaguer-Ballester
Ricardo Vinuesa
Emiliano Díaz
L. Zanna
Jakob Runge
PINN
AI4Cl
AI4CE
CML
35
72
0
21 May 2023
The transformative potential of machine learning for experiments in fluid mechanics
Ricardo Vinuesa
Steven L. Brunton
B. McKeon
AI4CE
35
68
0
28 Mar 2023
Predicting the wall-shear stress and wall pressure through convolutional neural networks
Arivazhagan G. Balasubramanian
L. Guastoni
P. Schlatter
Hossein Azizpour
Ricardo Vinuesa
18
5
0
01 Mar 2023
FR3D: Three-dimensional Flow Reconstruction and Force Estimation for Unsteady Flows Around Extruded Bluff Bodies via Conformal Mapping Aided Convolutional Autoencoders
Ali Girayhan Ozbay
S. Laizet
AI4CE
17
2
0
03 Feb 2023
Identifying regions of importance in wall-bounded turbulence through explainable deep learning
Andres Cremades
S. Hoyas
R. Deshpande
Pedro Quintero
Martin Lellep
...
J. Monty
Nicholas Hutchins
M. Linkmann
I. Marusic
Ricardo Vinuesa
FAtt
23
26
0
02 Feb 2023
Super-Resolution Analysis via Machine Learning: A Survey for Fluid Flows
Kai Fukami
K. Fukagata
Kunihiko Taira
AI4CE
16
104
0
26 Jan 2023
Generative Adversarial Networks to infer velocity components in rotating turbulent flows
Tianyi Li
M. Buzzicotti
Luca Biferale
F. Bonaccorso
14
10
0
18 Jan 2023
Multi-scale data reconstruction of turbulent rotating flows with Gappy POD, Extended POD and Generative Adversarial Networks
Tianyi Li
M. Buzzicotti
Luca Biferale
F. Bonaccorso
Shiyi Chen
M. Wan
AI4CE
11
21
0
21 Oct 2022
Improving aircraft performance using machine learning: a review
S. L. Clainche
E. Ferrer
Sam Gibson
Elisabeth Cross
A. Parente
Ricardo Vinuesa
AI4CE
31
93
0
20 Oct 2022
Residual-based physics-informed transfer learning: A hybrid method for accelerating long-term CFD simulations via deep learning
J. Jeon
Juhyeong Lee
Ricardo Vinuesa
S. J. Kim
AI4CE
8
25
0
14 Jun 2022
Explaining the physics of transfer learning a data-driven subgrid-scale closure to a different turbulent flow
Adam Subel
Yifei Guan
A. Chattopadhyay
P. Hassanzadeh
AI4CE
29
41
0
07 Jun 2022
Physics-informed deep-learning applications to experimental fluid mechanics
Hamidreza Eivazi
Yuning Wang
Ricardo Vinuesa
PINN
AI4CE
18
44
0
29 Mar 2022
A Thermodynamics-informed Active Learning Approach to Perception and Reasoning about Fluids
B. Moya
Alberto Badías
D. González
Francisco Chinesta
Elías Cueto
AI4CE
10
12
0
11 Mar 2022
Predicting the temporal dynamics of turbulent channels through deep learning
Giuseppe Borrelli
L. Guastoni
Hamidreza Eivazi
P. Schlatter
Ricardo Vinuesa
AI4TS
19
17
0
02 Mar 2022
Learned Turbulence Modelling with Differentiable Fluid Solvers: Physics-based Loss-functions and Optimisation Horizons
Bjorn List
Li-Wei Chen
Nils Thuerey
29
55
0
14 Feb 2022
Aim in Climate Change and City Pollution
P. Torres
B. Sirmaçek
S. Hoyas
Ricardo Vinuesa
HAI
AI4CE
16
0
0
30 Dec 2021
A Review of Physics-based Machine Learning in Civil Engineering
S. Vadyala
S. N. Betgeri
J. Matthews
Elizabeth Matthews
AI4CE
25
152
0
09 Oct 2021
Enhancing Computational Fluid Dynamics with Machine Learning
Ricardo Vinuesa
Steven L. Brunton
AI4CE
114
355
0
05 Oct 2021
Assessments of epistemic uncertainty using Gaussian stochastic weight averaging for fluid-flow regression
Masaki Morimoto
Kai Fukami
R. Maulik
Ricardo Vinuesa
K. Fukagata
UQCV
38
30
0
16 Sep 2021
Towards extraction of orthogonal and parsimonious non-linear modes from turbulent flows
Hamidreza Eivazi
S. L. C. Martínez
S. Hoyas
Ricardo Vinuesa
33
92
0
03 Sep 2021
Predicting the near-wall region of turbulence through convolutional neural networks
A. Balasubramanian
L. Guastoni
A. Güemes
A. Ianiro
S. Discetti
P. Schlatter
Hossein Azizpour
R. Vinuesa
18
6
0
15 Jul 2021
Remote sensing and AI for building climate adaptation applications
B. Sirmaçek
Ricardo Vinuesa
AI4CE
15
33
0
06 Jul 2021
Learning stable reduced-order models for hybrid twins
Abel Sancarlos
Morgan Cameron
Jean-Marc Le Peuvedic
J. Groulier
J. Duval
Elías Cueto
Francisco Chinesta
16
13
0
07 Jun 2021
Finite volume method network for acceleration of unsteady computational fluid dynamics: non-reacting and reacting flows
J. Jeon
Juhyeong Lee
S. J. Kim
19
28
0
07 May 2021
Deep Neural Networks for Nonlinear Model Order Reduction of Unsteady Flows
Hamidreza Eivazi
H. Veisi
M. H. Naderi
V. Esfahanian
AI4CE
31
167
0
02 Jul 2020
1