Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.12433
Cited By
What shapes feature representations? Exploring datasets, architectures, and training
22 June 2020
Katherine L. Hermann
Andrew Kyle Lampinen
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"What shapes feature representations? Exploring datasets, architectures, and training"
36 / 36 papers shown
Title
Exploring Causes of Representational Similarity in Machine Learning Models
Zeyu Michael Li
Hung Anh Vu
Damilola Awofisayo
Emily Wenger
CML
199
0
0
20 May 2025
Spurious Correlations in High Dimensional Regression: The Roles of Regularization, Simplicity Bias and Over-Parameterization
Simone Bombari
Marco Mondelli
190
0
0
03 Feb 2025
Refining Skewed Perceptions in Vision-Language Models through Visual Representations
Haocheng Dai
Sarang Joshi
VLM
102
0
0
03 Jan 2025
Measuring Error Alignment for Decision-Making Systems
Binxia Xu
Antonis Bikakis
Daniel Onah
A. Vlachidis
Luke Dickens
71
0
0
03 Jan 2025
Uncovering Memorization Effect in the Presence of Spurious Correlations
Chenyu You
Haocheng Dai
Yifei Min
Jasjeet Sekhon
S. Joshi
James S. Duncan
101
3
0
01 Jan 2025
What to align in multimodal contrastive learning?
Benoit Dufumier
J. Castillo-Navarro
D. Tuia
Jean-Philippe Thiran
86
4
0
11 Sep 2024
When does compositional structure yield compositional generalization? A kernel theory
Samuel Lippl
Kim Stachenfeld
NAI
CoGe
190
9
0
26 May 2024
Neural Redshift: Random Networks are not Random Functions
Damien Teney
A. Nicolicioiu
Valentin Hartmann
Ehsan Abbasnejad
123
23
0
04 Mar 2024
Similarity of Neural Network Models: A Survey of Functional and Representational Measures
Max Klabunde
Tobias Schumacher
M. Strohmaier
Florian Lemmerich
119
73
0
10 May 2023
Learning explanations that are hard to vary
Giambattista Parascandolo
Alexander Neitz
Antonio Orvieto
Luigi Gresele
Bernhard Schölkopf
FAtt
58
184
0
01 Sep 2020
The Pitfalls of Simplicity Bias in Neural Networks
Harshay Shah
Kaustav Tamuly
Aditi Raghunathan
Prateek Jain
Praneeth Netrapalli
AAML
65
359
0
13 Jun 2020
Shortcut Learning in Deep Neural Networks
Robert Geirhos
J. Jacobsen
Claudio Michaelis
R. Zemel
Wieland Brendel
Matthias Bethge
Felix Wichmann
198
2,044
0
16 Apr 2020
Training BatchNorm and Only BatchNorm: On the Expressive Power of Random Features in CNNs
Jonathan Frankle
D. Schwab
Ari S. Morcos
62
142
0
29 Feb 2020
How Much Position Information Do Convolutional Neural Networks Encode?
Md. Amirul Islam
Sen Jia
Neil D. B. Bruce
SSL
241
347
0
22 Jan 2020
What's Hidden in a Randomly Weighted Neural Network?
Vivek Ramanujan
Mitchell Wortsman
Aniruddha Kembhavi
Ali Farhadi
Mohammad Rastegari
66
356
0
29 Nov 2019
The Origins and Prevalence of Texture Bias in Convolutional Neural Networks
Katherine L. Hermann
Ting Chen
Simon Kornblith
CVBM
50
21
0
20 Nov 2019
Weight Agnostic Neural Networks
Adam Gaier
David R Ha
OOD
60
241
0
11 Jun 2019
Generative Continual Concept Learning
Mohammad Rostami
Soheil Kolouri
J. McClelland
Praveen K. Pilly
CLL
BDL
36
46
0
10 Jun 2019
Implicit Regularization in Deep Matrix Factorization
Sanjeev Arora
Nadav Cohen
Wei Hu
Yuping Luo
AI4CE
74
503
0
31 May 2019
Similarity of Neural Network Representations Revisited
Simon Kornblith
Mohammad Norouzi
Honglak Lee
Geoffrey E. Hinton
136
1,408
0
01 May 2019
Reconciling modern machine learning practice and the bias-variance trade-off
M. Belkin
Daniel J. Hsu
Siyuan Ma
Soumik Mandal
215
1,638
0
28 Dec 2018
ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness
Robert Geirhos
Patricia Rubisch
Claudio Michaelis
Matthias Bethge
Felix Wichmann
Wieland Brendel
96
2,662
0
29 Nov 2018
Rethinking ImageNet Pre-training
Kaiming He
Ross B. Girshick
Piotr Dollár
VLM
SSeg
125
1,084
0
21 Nov 2018
A mathematical theory of semantic development in deep neural networks
Andrew M. Saxe
James L. McClelland
Surya Ganguli
73
270
0
23 Oct 2018
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
Jacob Devlin
Ming-Wei Chang
Kenton Lee
Kristina Toutanova
VLM
SSL
SSeg
1.6K
94,511
0
11 Oct 2018
An analytic theory of generalization dynamics and transfer learning in deep linear networks
Andrew Kyle Lampinen
Surya Ganguli
OOD
62
131
0
27 Sep 2018
Do Better ImageNet Models Transfer Better?
Simon Kornblith
Jonathon Shlens
Quoc V. Le
OOD
MLT
153
1,324
0
23 May 2018
Deep learning generalizes because the parameter-function map is biased towards simple functions
Guillermo Valle Pérez
Chico Q. Camargo
A. Louis
MLT
AI4CE
75
231
0
22 May 2018
Mitigating Unwanted Biases with Adversarial Learning
B. Zhang
Blake Lemoine
Margaret Mitchell
FaML
174
1,380
0
22 Jan 2018
Deep Image Prior
Dmitry Ulyanov
Andrea Vedaldi
Victor Lempitsky
SupR
114
3,147
0
29 Nov 2017
Opening the Black Box of Deep Neural Networks via Information
Ravid Shwartz-Ziv
Naftali Tishby
AI4CE
98
1,407
0
02 Mar 2017
Overcoming catastrophic forgetting in neural networks
J. Kirkpatrick
Razvan Pascanu
Neil C. Rabinowitz
J. Veness
Guillaume Desjardins
...
A. Grabska-Barwinska
Demis Hassabis
Claudia Clopath
D. Kumaran
R. Hadsell
CLL
325
7,478
0
02 Dec 2016
What makes ImageNet good for transfer learning?
Minyoung Huh
Pulkit Agrawal
Alexei A. Efros
OOD
SSeg
VLM
SSL
99
676
0
30 Aug 2016
Fine-grained Analysis of Sentence Embeddings Using Auxiliary Prediction Tasks
Yossi Adi
Einat Kermany
Yonatan Belinkov
Ofer Lavi
Yoav Goldberg
59
545
0
15 Aug 2016
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.5K
149,842
0
22 Dec 2014
Exact solutions to the nonlinear dynamics of learning in deep linear neural networks
Andrew M. Saxe
James L. McClelland
Surya Ganguli
ODL
162
1,844
0
20 Dec 2013
1