ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.12179
  4. Cited By
Hierarchical Inter-Message Passing for Learning on Molecular Graphs

Hierarchical Inter-Message Passing for Learning on Molecular Graphs

22 June 2020
Matthias Fey
Jan-Gin Yuen
F. Weichert
    GNN
ArXivPDFHTML

Papers citing "Hierarchical Inter-Message Passing for Learning on Molecular Graphs"

7 / 57 papers shown
Title
Graph convolutions that can finally model local structure
Graph convolutions that can finally model local structure
Rémy Brossard
Oriel Frigo
David Dehaene
GNN
34
48
0
30 Nov 2020
Improving Graph Property Prediction with Generalized Readout Functions
Eric Alcaide
OOD
AI4CE
16
0
0
21 Sep 2020
Building powerful and equivariant graph neural networks with structural
  message-passing
Building powerful and equivariant graph neural networks with structural message-passing
Clément Vignac
Andreas Loukas
P. Frossard
31
119
0
26 Jun 2020
Wasserstein Embedding for Graph Learning
Wasserstein Embedding for Graph Learning
Soheil Kolouri
Navid Naderializadeh
Gustavo K. Rohde
Heiko Hoffmann
GNN
24
85
0
16 Jun 2020
Improving Graph Neural Network Expressivity via Subgraph Isomorphism
  Counting
Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting
Giorgos Bouritsas
Fabrizio Frasca
S. Zafeiriou
M. Bronstein
55
424
0
16 Jun 2020
Junction Tree Variational Autoencoder for Molecular Graph Generation
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
224
1,340
0
12 Feb 2018
MoleculeNet: A Benchmark for Molecular Machine Learning
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
181
1,778
0
02 Mar 2017
Previous
12