Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.12179
Cited By
Hierarchical Inter-Message Passing for Learning on Molecular Graphs
22 June 2020
Matthias Fey
Jan-Gin Yuen
F. Weichert
GNN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Hierarchical Inter-Message Passing for Learning on Molecular Graphs"
7 / 57 papers shown
Title
Graph convolutions that can finally model local structure
Rémy Brossard
Oriel Frigo
David Dehaene
GNN
34
48
0
30 Nov 2020
Improving Graph Property Prediction with Generalized Readout Functions
Eric Alcaide
OOD
AI4CE
16
0
0
21 Sep 2020
Building powerful and equivariant graph neural networks with structural message-passing
Clément Vignac
Andreas Loukas
P. Frossard
31
119
0
26 Jun 2020
Wasserstein Embedding for Graph Learning
Soheil Kolouri
Navid Naderializadeh
Gustavo K. Rohde
Heiko Hoffmann
GNN
24
85
0
16 Jun 2020
Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting
Giorgos Bouritsas
Fabrizio Frasca
S. Zafeiriou
M. Bronstein
55
424
0
16 Jun 2020
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
224
1,340
0
12 Feb 2018
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
181
1,778
0
02 Mar 2017
Previous
1
2