ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.11796
  4. Cited By
Pruning the Pilots: Deep Learning-Based Pilot Design and Channel
  Estimation for MIMO-OFDM Systems

Pruning the Pilots: Deep Learning-Based Pilot Design and Channel Estimation for MIMO-OFDM Systems

21 June 2020
Mahdi Boloursaz Mashhadi
Deniz Gunduz
ArXivPDFHTML

Papers citing "Pruning the Pilots: Deep Learning-Based Pilot Design and Channel Estimation for MIMO-OFDM Systems"

10 / 10 papers shown
Title
Data-Driven Deep Learning to Design Pilot and Channel Estimator For
  Massive MIMO
Data-Driven Deep Learning to Design Pilot and Channel Estimator For Massive MIMO
Xisuo Ma
Zhen Gao
13
117
0
12 Mar 2020
Distributed Deep Convolutional Compression for Massive MIMO CSI Feedback
Distributed Deep Convolutional Compression for Massive MIMO CSI Feedback
Mahdi Boloursaz Mashhadi
Qianqian Yang
Deniz Gunduz
54
94
0
07 Mar 2020
Deep Learning for Massive MIMO Channel State Acquisition and Feedback
Deep Learning for Massive MIMO Channel State Acquisition and Feedback
Mahdi Boloursaz Mashhadi
Deniz Gündüz
45
29
0
17 Feb 2020
CNN-based Analog CSI Feedback in FDD MIMO-OFDM Systems
CNN-based Analog CSI Feedback in FDD MIMO-OFDM Systems
Mahdi Boloursaz Mashhadi
Qianqian Yang
Deniz Gunduz
38
25
0
23 Oct 2019
Deep Convolutional Compression for Massive MIMO CSI Feedback
Deep Convolutional Compression for Massive MIMO CSI Feedback
Qianqian Yang
Mahdi Boloursaz Mashhadi
Deniz Gündüz
24
57
0
02 Jul 2019
Faster gaze prediction with dense networks and Fisher pruning
Faster gaze prediction with dense networks and Fisher pruning
Lucas Theis
I. Korshunova
Alykhan Tejani
Ferenc Huszár
43
204
0
17 Jan 2018
Non-local Neural Networks
Non-local Neural Networks
Xinyu Wang
Ross B. Girshick
Abhinav Gupta
Kaiming He
OffRL
218
8,867
0
21 Nov 2017
Network Trimming: A Data-Driven Neuron Pruning Approach towards
  Efficient Deep Architectures
Network Trimming: A Data-Driven Neuron Pruning Approach towards Efficient Deep Architectures
Hengyuan Hu
Rui Peng
Yu-Wing Tai
Chi-Keung Tang
50
889
0
12 Jul 2016
Learning both Weights and Connections for Efficient Neural Networks
Learning both Weights and Connections for Efficient Neural Networks
Song Han
Jeff Pool
J. Tran
W. Dally
CVBM
247
6,628
0
08 Jun 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
898
149,474
0
22 Dec 2014
1