Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.11194
Cited By
Does Explainable Artificial Intelligence Improve Human Decision-Making?
19 June 2020
Y. Alufaisan
L. Marusich
J. Bakdash
Yan Zhou
Murat Kantarcioglu
XAI
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Does Explainable Artificial Intelligence Improve Human Decision-Making?"
12 / 12 papers shown
Title
Graphical Perception of Saliency-based Model Explanations
Yayan Zhao
Mingwei Li
Matthew Berger
XAI
FAtt
46
2
0
11 Jun 2024
In Search of Verifiability: Explanations Rarely Enable Complementary Performance in AI-Advised Decision Making
Raymond Fok
Daniel S. Weld
24
61
0
12 May 2023
Human-AI Collaboration: The Effect of AI Delegation on Human Task Performance and Task Satisfaction
Patrick Hemmer
Monika Westphal
Max Schemmer
S. Vetter
Michael Vossing
G. Satzger
44
42
0
16 Mar 2023
Superhuman Artificial Intelligence Can Improve Human Decision Making by Increasing Novelty
Minkyu Shin
Jin Kim
B. V. Opheusden
Thomas L. Griffiths
24
46
0
13 Mar 2023
SpecXAI -- Spectral interpretability of Deep Learning Models
Stefan Druc
Peter Wooldridge
A. Krishnamurthy
S. Sarkar
Aditya Balu
22
0
0
20 Feb 2023
Understanding User Preferences in Explainable Artificial Intelligence: A Survey and a Mapping Function Proposal
M. Hashemi
Ali Darejeh
Francisco Cruz
40
3
0
07 Feb 2023
Appropriate Reliance on AI Advice: Conceptualization and the Effect of Explanations
Max Schemmer
Niklas Kühl
Carina Benz
Andrea Bartos
G. Satzger
19
97
0
04 Feb 2023
Explanations, Fairness, and Appropriate Reliance in Human-AI Decision-Making
Jakob Schoeffer
Maria De-Arteaga
Niklas Kuehl
FaML
45
46
0
23 Sep 2022
A Meta-Analysis of the Utility of Explainable Artificial Intelligence in Human-AI Decision-Making
Max Schemmer
Patrick Hemmer
Maximilian Nitsche
Niklas Kühl
Michael Vossing
19
55
0
10 May 2022
Pitfalls of Explainable ML: An Industry Perspective
Sahil Verma
Aditya Lahiri
John P. Dickerson
Su-In Lee
XAI
16
9
0
14 Jun 2021
Exemplary Natural Images Explain CNN Activations Better than State-of-the-Art Feature Visualization
Judy Borowski
Roland S. Zimmermann
Judith Schepers
Robert Geirhos
Thomas S. A. Wallis
Matthias Bethge
Wieland Brendel
FAtt
36
7
0
23 Oct 2020
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
251
3,683
0
28 Feb 2017
1