ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.11166
  4. Cited By
Fast Mixing of Multi-Scale Langevin Dynamics under the Manifold
  Hypothesis
v1v2 (latest)

Fast Mixing of Multi-Scale Langevin Dynamics under the Manifold Hypothesis

19 June 2020
Adam Block
Youssef Mroueh
Alexander Rakhlin
Jerret Ross
ArXiv (abs)PDFHTML

Papers citing "Fast Mixing of Multi-Scale Langevin Dynamics under the Manifold Hypothesis"

9 / 9 papers shown
Title
Creating High Resolution Images with a Latent Adversarial Generator
Creating High Resolution Images with a Latent Adversarial Generator
David Berthelot
P. Milanfar
Ian Goodfellow
GAN
53
18
0
04 Mar 2020
Fast Convergence for Langevin Diffusion with Manifold Structure
Fast Convergence for Langevin Diffusion with Manifold Structure
Ankur Moitra
Andrej Risteski
40
7
0
13 Feb 2020
Consistency Regularization for Generative Adversarial Networks
Consistency Regularization for Generative Adversarial Networks
Han Zhang
Zizhao Zhang
Augustus Odena
Honglak Lee
GAN
66
285
0
26 Oct 2019
Generative Modeling by Estimating Gradients of the Data Distribution
Generative Modeling by Estimating Gradients of the Data Distribution
Yang Song
Stefano Ermon
SyDaDiffM
258
3,916
0
12 Jul 2019
Stochastic Runge-Kutta Accelerates Langevin Monte Carlo and Beyond
Stochastic Runge-Kutta Accelerates Langevin Monte Carlo and Beyond
Xuechen Li
Denny Wu
Lester W. Mackey
Murat A. Erdogdu
52
71
0
19 Jun 2019
Beyond Log-concavity: Provable Guarantees for Sampling Multi-modal
  Distributions using Simulated Tempering Langevin Monte Carlo
Beyond Log-concavity: Provable Guarantees for Sampling Multi-modal Distributions using Simulated Tempering Langevin Monte Carlo
Rong Ge
Holden Lee
Andrej Risteski
73
53
0
07 Oct 2017
A-NICE-MC: Adversarial Training for MCMC
A-NICE-MC: Adversarial Training for MCMC
Jiaming Song
Shengjia Zhao
Stefano Ermon
BDLOOD
79
110
0
23 Jun 2017
Non-convex learning via Stochastic Gradient Langevin Dynamics: a
  nonasymptotic analysis
Non-convex learning via Stochastic Gradient Langevin Dynamics: a nonasymptotic analysis
Maxim Raginsky
Alexander Rakhlin
Matus Telgarsky
73
521
0
13 Feb 2017
Testing the Manifold Hypothesis
Testing the Manifold Hypothesis
Charles Fefferman
S. Mitter
Hariharan Narayanan
151
534
0
01 Oct 2013
1