Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.11135
Cited By
Exploratory Landscape Analysis is Strongly Sensitive to the Sampling Strategy
19 June 2020
Quentin Renau
Carola Doerr
Johann Dréo
Benjamin Doerr
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Exploratory Landscape Analysis is Strongly Sensitive to the Sampling Strategy"
8 / 8 papers shown
Title
Reinforcement learning Based Automated Design of Differential Evolution Algorithm for Black-box Optimization
Xu Yang
Rui Wang
Kaiwen Li
Ling Wang
56
0
0
22 Jan 2025
A Survey of Meta-features Used for Automated Selection of Algorithms for Black-box Single-objective Continuous Optimization
Gjorgjina Cenikj
Ana Nikolikj
Gašper Petelin
Niki van Stein
Carola Doerr
T. Eftimov
54
1
0
08 Jun 2024
Challenges of ELA-guided Function Evolution using Genetic Programming
Fu Xing Long
Diederick Vermetten
Anna V. Kononova
Roman Kalkreuth
Kaifeng Yang
Thomas Bäck
Niki van Stein
22
6
0
24 May 2023
Using Knowledge Graphs for Performance Prediction of Modular Optimization Algorithms
Ana Kostovska
Diederick Vermetten
S. Džeroski
P. Panov
T. Eftimov
Carola Doerr
12
8
0
24 Jan 2023
BBOB Instance Analysis: Landscape Properties and Algorithm Performance across Problem Instances
F. Long
Diederick Vermetten
Bas van Stein
Anna V. Kononova
16
19
0
29 Nov 2022
OPTION: OPTImization Algorithm Benchmarking ONtology
Ana Kostovska
Diederick Vermetten
Carola Doerr
S. Džeroski
P. Panov
T. Eftimov
21
11
0
21 Nov 2022
The Importance of Landscape Features for Performance Prediction of Modular CMA-ES Variants
Ana Kostovska
Diederick Vermetten
S. Džeroski
Carola Doerr
Peter Korošec
T. Eftimov
31
8
0
15 Apr 2022
Towards Feature-Based Performance Regression Using Trajectory Data
Anja Jankovic
T. Eftimov
Carola Doerr
28
26
0
10 Feb 2021
1