ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.10350
  4. Cited By
Kernel methods through the roof: handling billions of points efficiently

Kernel methods through the roof: handling billions of points efficiently

18 June 2020
Giacomo Meanti
Luigi Carratino
Lorenzo Rosasco
Alessandro Rudi
ArXivPDFHTML

Papers citing "Kernel methods through the roof: handling billions of points efficiently"

25 / 25 papers shown
Title
Learning cardiac activation and repolarization times with operator learning
Learning cardiac activation and repolarization times with operator learning
Edoardo Centofanti
Giovanni Ziarelli
N. Parolini
Simone Scacchi
M. Verani
L. Pavarino
AI4CE
31
0
0
13 May 2025
Forecasting time series with constraints
Forecasting time series with constraints
Nathan Doumèche
Francis Bach
Éloi Bedek
Gérard Biau
Claire Boyer
Y. Goude
AI4TS
45
0
0
14 Feb 2025
Embrace rejection: Kernel matrix approximation by accelerated randomly pivoted Cholesky
Embrace rejection: Kernel matrix approximation by accelerated randomly pivoted Cholesky
Ethan N. Epperly
J. Tropp
R. Webber
34
3
0
04 Oct 2024
Learning in Feature Spaces via Coupled Covariances: Asymmetric Kernel SVD and Nyström method
Learning in Feature Spaces via Coupled Covariances: Asymmetric Kernel SVD and Nyström method
Qinghua Tao
F. Tonin
Alex Lambert
Yingyi Chen
Panagiotis Patrinos
Johan A. K. Suykens
40
1
0
13 Jun 2024
Nearest Neighbors GParareal: Improving Scalability of Gaussian Processes
  for Parallel-in-Time Solvers
Nearest Neighbors GParareal: Improving Scalability of Gaussian Processes for Parallel-in-Time Solvers
Guglielmo Gattiglio
Lyudmila Grigoryeva
M. Tamborrino
35
1
0
20 May 2024
Faster Linear Systems and Matrix Norm Approximation via Multi-level Sketched Preconditioning
Faster Linear Systems and Matrix Norm Approximation via Multi-level Sketched Preconditioning
Michal Dereziñski
Christopher Musco
Jiaming Yang
45
2
0
09 May 2024
Kermut: Composite kernel regression for protein variant effects
Kermut: Composite kernel regression for protein variant effects
Peter Mørch Groth
Mads Herbert Kerrn
Lars Olsen
Jesper Salomon
Wouter Boomsma
42
2
0
09 Apr 2024
Memory-Scalable and Simplified Functional Map Learning
Memory-Scalable and Simplified Functional Map Learning
Robin Magnet
M. Ovsjanikov
35
2
0
30 Mar 2024
Quantized Fourier and Polynomial Features for more Expressive Tensor
  Network Models
Quantized Fourier and Polynomial Features for more Expressive Tensor Network Models
Frederiek Wesel
Kim Batselier
19
1
0
11 Sep 2023
Unbalanced Optimal Transport, from Theory to Numerics
Unbalanced Optimal Transport, from Theory to Numerics
Thibault Séjourné
Gabriel Peyré
Franccois-Xavier Vialard
OT
25
47
0
16 Nov 2022
Memory Safe Computations with XLA Compiler
Memory Safe Computations with XLA Compiler
A. Artemev
Tilman Roeder
Mark van der Wilk
29
8
0
28 Jun 2022
Fast Kernel Methods for Generic Lipschitz Losses via $p$-Sparsified
  Sketches
Fast Kernel Methods for Generic Lipschitz Losses via ppp-Sparsified Sketches
T. Ahmad
Pierre Laforgue
Florence dÁlché-Buc
19
5
0
08 Jun 2022
Learning Dynamical Systems via Koopman Operator Regression in
  Reproducing Kernel Hilbert Spaces
Learning Dynamical Systems via Koopman Operator Regression in Reproducing Kernel Hilbert Spaces
Vladimir Kostic
P. Novelli
Andreas Maurer
C. Ciliberto
Lorenzo Rosasco
Massimiliano Pontil
18
60
0
27 May 2022
Active Labeling: Streaming Stochastic Gradients
Active Labeling: Streaming Stochastic Gradients
Vivien A. Cabannes
Francis R. Bach
Vianney Perchet
Alessandro Rudi
58
2
0
26 May 2022
Physics Informed Shallow Machine Learning for Wind Speed Prediction
Physics Informed Shallow Machine Learning for Wind Speed Prediction
Daniele Lagomarsino Oneto
Giacomo Meanti
Nicolò Pagliana
A. Verri
A. Mazzino
Lorenzo Rosasco
A. Seminara
11
2
0
01 Apr 2022
Giga-scale Kernel Matrix Vector Multiplication on GPU
Giga-scale Kernel Matrix Vector Multiplication on GPU
Robert Hu
Siu Lun Chau
Dino Sejdinovic
J. Glaunès
29
2
0
02 Feb 2022
Sublinear Time Approximation of Text Similarity Matrices
Sublinear Time Approximation of Text Similarity Matrices
Archan Ray
Nicholas Monath
Andrew McCallum
Cameron Musco
32
7
0
17 Dec 2021
Sampling from Arbitrary Functions via PSD Models
Sampling from Arbitrary Functions via PSD Models
Ulysse Marteau-Ferey
Francis R. Bach
Alessandro Rudi
16
10
0
20 Oct 2021
Simple, Fast, and Flexible Framework for Matrix Completion with Infinite
  Width Neural Networks
Simple, Fast, and Flexible Framework for Matrix Completion with Infinite Width Neural Networks
Adityanarayanan Radhakrishnan
George Stefanakis
M. Belkin
Caroline Uhler
30
25
0
31 Jul 2021
Ada-BKB: Scalable Gaussian Process Optimization on Continuous Domains by
  Adaptive Discretization
Ada-BKB: Scalable Gaussian Process Optimization on Continuous Domains by Adaptive Discretization
Marco Rando
Luigi Carratino
S. Villa
Lorenzo Rosasco
41
5
0
16 Jun 2021
Tighter Bounds on the Log Marginal Likelihood of Gaussian Process
  Regression Using Conjugate Gradients
Tighter Bounds on the Log Marginal Likelihood of Gaussian Process Regression Using Conjugate Gradients
A. Artemev
David R. Burt
Mark van der Wilk
23
18
0
16 Feb 2021
Conditional Distributional Treatment Effect with Kernel Conditional Mean
  Embeddings and U-Statistic Regression
Conditional Distributional Treatment Effect with Kernel Conditional Mean Embeddings and U-Statistic Regression
Junhyung Park
Uri Shalit
Bernhard Schölkopf
Krikamol Muandet
CML
21
31
0
16 Feb 2021
Random Features for Kernel Approximation: A Survey on Algorithms,
  Theory, and Beyond
Random Features for Kernel Approximation: A Survey on Algorithms, Theory, and Beyond
Fanghui Liu
Xiaolin Huang
Yudong Chen
Johan A. K. Suykens
BDL
44
172
0
23 Apr 2020
A Framework for Interdomain and Multioutput Gaussian Processes
A Framework for Interdomain and Multioutput Gaussian Processes
Mark van der Wilk
Vincent Dutordoir
S. T. John
A. Artemev
Vincent Adam
J. Hensman
40
94
0
02 Mar 2020
Sharp analysis of low-rank kernel matrix approximations
Sharp analysis of low-rank kernel matrix approximations
Francis R. Bach
86
277
0
09 Aug 2012
1