Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.10226
Cited By
Efficient Execution of Quantized Deep Learning Models: A Compiler Approach
18 June 2020
Animesh Jain
Shoubhik Bhattacharya
Masahiro Masuda
Vin Sharma
Yida Wang
MQ
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Efficient Execution of Quantized Deep Learning Models: A Compiler Approach"
4 / 4 papers shown
Title
Decompiling x86 Deep Neural Network Executables
Zhibo Liu
Yuanyuan Yuan
Shuai Wang
Xiaofei Xie
Lei Ma
AAML
45
13
0
03 Oct 2022
Quantune: Post-training Quantization of Convolutional Neural Networks using Extreme Gradient Boosting for Fast Deployment
Jemin Lee
Misun Yu
Yongin Kwon
Teaho Kim
MQ
27
17
0
10 Feb 2022
Automated Backend-Aware Post-Training Quantization
Ziheng Jiang
Animesh Jain
An Liu
Josh Fromm
Chengqian Ma
Tianqi Chen
Luis Ceze
MQ
37
2
0
27 Mar 2021
Reduced Precision Strategies for Deep Learning: A High Energy Physics Generative Adversarial Network Use Case
F. Rehm
S. Vallecorsa
V. Saletore
Hans Pabst
Adel Chaibi
V. Codreanu
Kerstin Borras
D. Krücker
MQ
19
16
0
18 Mar 2021
1