ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.09430
  4. Cited By
Wasserstein Embedding for Graph Learning

Wasserstein Embedding for Graph Learning

16 June 2020
Soheil Kolouri
Navid Naderializadeh
Gustavo K. Rohde
Heiko Hoffmann
    GNN
ArXivPDFHTML

Papers citing "Wasserstein Embedding for Graph Learning"

14 / 14 papers shown
Title
Linear Partial Gromov-Wasserstein Embedding
Linear Partial Gromov-Wasserstein Embedding
Yikun Bai
Abihith Kothapalli
Hengrong Du
Rocio Diaz Martin
Soheil Kolouri
29
0
0
22 Oct 2024
Spectral Clustering for Discrete Distributions
Spectral Clustering for Discrete Distributions
Zixiao Wang
Dong Qiao
Jicong Fan
14
0
0
25 Jan 2024
Technical report: Graph Neural Networks go Grammatical
Technical report: Graph Neural Networks go Grammatical
Jason Piquenot
Aldo Moscatelli
Maxime Bérar
Pierre Héroux
R. Raveaux
Jean-Yves Ramel
Sébastien Adam
25
1
0
02 Mar 2023
Linear Optimal Partial Transport Embedding
Linear Optimal Partial Transport Embedding
Yikun Bai
I. Medri
Rocio Diaz Martin
Rana Muhammad Shahroz Khan
Soheil Kolouri
OT
40
9
0
07 Feb 2023
Regularized Optimal Transport Layers for Generalized Global Pooling
  Operations
Regularized Optimal Transport Layers for Generalized Global Pooling Operations
Hongteng Xu
Minjie Cheng
36
4
0
13 Dec 2022
Hybrid Gromov-Wasserstein Embedding for Capsule Learning
Hybrid Gromov-Wasserstein Embedding for Capsule Learning
Pourya Shamsolmoali
Masoumeh Zareapoor
Swagatam Das
Eric Granger
Salvador García
MedIm
24
2
0
01 Sep 2022
Embedding Graphs on Grassmann Manifold
Embedding Graphs on Grassmann Manifold
Bingxin Zhou
Xuebin Zheng
Yu Guang Wang
Ming Li
Junbin Gao
22
3
0
30 May 2022
Unified GCNs: Towards Connecting GCNs with CNNs
Unified GCNs: Towards Connecting GCNs with CNNs
Ziyan Zhang
Bo Jiang
Bin Luo
GNN
25
1
0
26 Apr 2022
A Survey on Optimal Transport for Machine Learning: Theory and
  Applications
A Survey on Optimal Transport for Machine Learning: Theory and Applications
Luis Caicedo Torres
Luiz Manella Pereira
M. Amini
OOD
OT
31
47
0
03 Jun 2021
Graph Classification by Mixture of Diverse Experts
Graph Classification by Mixture of Diverse Experts
Fenyu Hu
Liping Wang
Shu Wu
Liang Wang
T. Tan
31
10
0
29 Mar 2021
LCS Graph Kernel Based on Wasserstein Distance in Longest Common
  Subsequence Metric Space
LCS Graph Kernel Based on Wasserstein Distance in Longest Common Subsequence Metric Space
Jianming Huang
Zhongxi Fang
Hiroyuki Kasai
23
19
0
07 Dec 2020
Improving Graph Neural Network Expressivity via Subgraph Isomorphism
  Counting
Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting
Giorgos Bouritsas
Fabrizio Frasca
S. Zafeiriou
M. Bronstein
52
424
0
16 Jun 2020
Measuring the Algorithmic Efficiency of Neural Networks
Measuring the Algorithmic Efficiency of Neural Networks
Danny Hernandez
Tom B. Brown
235
94
0
08 May 2020
COPT: Coordinated Optimal Transport for Graph Sketching
COPT: Coordinated Optimal Transport for Graph Sketching
Yihe Dong
W. Sawin
OT
43
26
0
09 Mar 2020
1