ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.09275
  4. Cited By
Hierarchical, rotation-equivariant neural networks to select structural
  models of protein complexes

Hierarchical, rotation-equivariant neural networks to select structural models of protein complexes

5 June 2020
Stephan Eismann
Raphael J. L. Townshend
Nathaniel Thomas
Milind Jagota
Bowen Jing
R. Dror
ArXivPDFHTML

Papers citing "Hierarchical, rotation-equivariant neural networks to select structural models of protein complexes"

3 / 3 papers shown
Title
Energy-based Graph Convolutional Networks for Scoring Protein Docking
  Models
Energy-based Graph Convolutional Networks for Scoring Protein Docking Models
Yue Cao
Yang Shen
28
45
0
28 Dec 2019
End-to-End Learning on 3D Protein Structure for Interface Prediction
End-to-End Learning on 3D Protein Structure for Interface Prediction
Raphael J. L. Townshend
Rishi Bedi
Patricia Suriana
R. Dror
3DV
32
102
0
03 Jul 2018
SchNet: A continuous-filter convolutional neural network for modeling
  quantum interactions
SchNet: A continuous-filter convolutional neural network for modeling quantum interactions
Kristof T. Schütt
Pieter-Jan Kindermans
Huziel Enoc Sauceda Felix
Stefan Chmiela
A. Tkatchenko
K. Müller
112
1,069
0
26 Jun 2017
1