ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.09049
  4. Cited By
Multi-Precision Policy Enforced Training (MuPPET): A precision-switching
  strategy for quantised fixed-point training of CNNs

Multi-Precision Policy Enforced Training (MuPPET): A precision-switching strategy for quantised fixed-point training of CNNs

16 June 2020
A. Rajagopal
D. A. Vink
Stylianos I. Venieris
C. Bouganis
    MQ
ArXivPDFHTML

Papers citing "Multi-Precision Policy Enforced Training (MuPPET): A precision-switching strategy for quantised fixed-point training of CNNs"

24 / 24 papers shown
Title
Progressive Mixed-Precision Decoding for Efficient LLM Inference
Progressive Mixed-Precision Decoding for Efficient LLM Inference
Hao Mark Chen
Fuwen Tan
Alexandros Kouris
Royson Lee
Hongxiang Fan
Stylianos I. Venieris
MQ
66
2
0
17 Oct 2024
Accelerating Minibatch Stochastic Gradient Descent using Typicality
  Sampling
Accelerating Minibatch Stochastic Gradient Descent using Typicality Sampling
Xinyu Peng
Li Li
Feiyue Wang
BDL
114
59
0
11 Mar 2019
Training Deep Neural Networks with 8-bit Floating Point Numbers
Training Deep Neural Networks with 8-bit Floating Point Numbers
Naigang Wang
Jungwook Choi
D. Brand
Chia-Yu Chen
K. Gopalakrishnan
MQ
62
501
0
19 Dec 2018
Analysis of DAWNBench, a Time-to-Accuracy Machine Learning Performance
  Benchmark
Analysis of DAWNBench, a Time-to-Accuracy Machine Learning Performance Benchmark
Cody Coleman
Daniel Kang
Deepak Narayanan
Luigi Nardi
Tian Zhao
Jian Zhang
Peter Bailis
K. Olukotun
Christopher Ré
Matei A. Zaharia
51
117
0
04 Jun 2018
CascadeCNN: Pushing the performance limits of quantisation
CascadeCNN: Pushing the performance limits of quantisation
Alexandros Kouris
Stylianos I. Venieris
C. Bouganis
MQ
47
24
0
22 May 2018
Not All Samples Are Created Equal: Deep Learning with Importance
  Sampling
Not All Samples Are Created Equal: Deep Learning with Importance Sampling
Angelos Katharopoulos
François Fleuret
92
520
0
02 Mar 2018
Approximate FPGA-based LSTMs under Computation Time Constraints
Approximate FPGA-based LSTMs under Computation Time Constraints
Michalis Rizakis
Stylianos I. Venieris
Alexandros Kouris
C. Bouganis
47
32
0
07 Jan 2018
AdaBatch: Adaptive Batch Sizes for Training Deep Neural Networks
AdaBatch: Adaptive Batch Sizes for Training Deep Neural Networks
Aditya Devarakonda
Maxim Naumov
M. Garland
ODL
70
136
0
06 Dec 2017
Mixed Precision Training
Mixed Precision Training
Paulius Micikevicius
Sharan Narang
Jonah Alben
G. Diamos
Erich Elsen
...
Boris Ginsburg
Michael Houston
Oleksii Kuchaiev
Ganesh Venkatesh
Hao Wu
157
1,799
0
10 Oct 2017
Learning to Fly by Crashing
Learning to Fly by Crashing
Dhiraj Gandhi
Lerrel Pinto
Abhinav Gupta
SSL
89
276
0
19 Apr 2017
In-Datacenter Performance Analysis of a Tensor Processing Unit
In-Datacenter Performance Analysis of a Tensor Processing Unit
N. Jouppi
C. Young
Nishant Patil
David Patterson
Gaurav Agrawal
...
Vijay Vasudevan
Richard Walter
Walter Wang
Eric Wilcox
Doe Hyun Yoon
235
4,635
0
16 Apr 2017
Efficient Processing of Deep Neural Networks: A Tutorial and Survey
Efficient Processing of Deep Neural Networks: A Tutorial and Survey
Vivienne Sze
Yu-hsin Chen
Tien-Ju Yang
J. Emer
AAML
3DV
120
3,022
0
27 Mar 2017
Mask R-CNN
Mask R-CNN
Kaiming He
Georgia Gkioxari
Piotr Dollár
Ross B. Girshick
ObjD
352
27,195
0
20 Mar 2017
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
Laurens van der Maaten
Kilian Q. Weinberger
PINN
3DV
772
36,813
0
25 Aug 2016
DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low
  Bitwidth Gradients
DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients
Shuchang Zhou
Yuxin Wu
Zekun Ni
Xinyu Zhou
He Wen
Yuheng Zou
MQ
119
2,088
0
20 Jun 2016
Long-term Temporal Convolutions for Action Recognition
Long-term Temporal Convolutions for Action Recognition
Gül Varol
Ivan Laptev
Cordelia Schmid
77
911
0
15 Apr 2016
Inception-v4, Inception-ResNet and the Impact of Residual Connections on
  Learning
Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning
Christian Szegedy
Sergey Ioffe
Vincent Vanhoucke
Alexander A. Alemi
377
14,253
0
23 Feb 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,020
0
10 Dec 2015
Online Batch Selection for Faster Training of Neural Networks
Online Batch Selection for Faster Training of Neural Networks
I. Loshchilov
Frank Hutter
ODL
89
301
0
19 Nov 2015
Taming the Wild: A Unified Analysis of Hogwild!-Style Algorithms
Taming the Wild: A Unified Analysis of Hogwild!-Style Algorithms
Christopher De Sa
Ce Zhang
K. Olukotun
Christopher Ré
80
204
0
22 Jun 2015
Beyond Short Snippets: Deep Networks for Video Classification
Beyond Short Snippets: Deep Networks for Video Classification
Joe Yue-Hei Ng
Matthew J. Hausknecht
Sudheendra Vijayanarasimhan
Oriol Vinyals
R. Monga
G. Toderici
145
2,337
0
31 Mar 2015
Deep Learning with Limited Numerical Precision
Deep Learning with Limited Numerical Precision
Suyog Gupta
A. Agrawal
K. Gopalakrishnan
P. Narayanan
HAI
204
2,047
0
09 Feb 2015
Two-Stream Convolutional Networks for Action Recognition in Videos
Two-Stream Convolutional Networks for Action Recognition in Videos
Karen Simonyan
Andrew Zisserman
244
7,535
0
09 Jun 2014
Microsoft COCO: Common Objects in Context
Microsoft COCO: Common Objects in Context
Nayeon Lee
Michael Maire
Serge J. Belongie
Lubomir Bourdev
Ross B. Girshick
James Hays
Pietro Perona
Deva Ramanan
C. L. Zitnick
Piotr Dollár
ObjD
413
43,667
0
01 May 2014
1