Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.08973
Cited By
v1
v2
v3
v4
v5
v6 (latest)
A Deterministic Approximation to Neural SDEs
16 June 2020
Andreas Look
M. Kandemir
Barbara Rakitsch
Jan Peters
DiffM
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"A Deterministic Approximation to Neural SDEs"
24 / 24 papers shown
Title
Deterministic Uncertainty Propagation for Improved Model-Based Offline Reinforcement Learning
Abdullah Akgul
Manuel Haußmann
M. Kandemir
OffRL
202
0
0
17 Jan 2025
Evidential Turing Processes
M. Kandemir
Abdullah Akgul
Manuel Haussmann
Gözde B. Ünal
EDL
UQCV
BDL
64
10
0
02 Jun 2021
Score-Based Generative Modeling through Stochastic Differential Equations
Yang Song
Jascha Narain Sohl-Dickstein
Diederik P. Kingma
Abhishek Kumar
Stefano Ermon
Ben Poole
DiffM
SyDa
353
6,566
0
26 Nov 2020
Stochastic Differential Equations with Variational Wishart Diffusions
Martin Jørgensen
M. Deisenroth
Hugh Salimbeni
DiffM
41
8
0
26 Jun 2020
Calibrated Reliable Regression using Maximum Mean Discrepancy
Peng Cui
Wenbo Hu
Jun Zhu
UQCV
60
48
0
18 Jun 2020
Beyond the Mean-Field: Structured Deep Gaussian Processes Improve the Predictive Uncertainties
J. Lindinger
David Reeb
C. Lippert
Barbara Rakitsch
BDL
UQCV
52
8
0
22 May 2020
Dream to Control: Learning Behaviors by Latent Imagination
Danijar Hafner
Timothy Lillicrap
Jimmy Ba
Mohammad Norouzi
VLM
128
1,371
0
03 Dec 2019
Multiple Futures Prediction
Yichuan Tang
Ruslan Salakhutdinov
96
353
0
04 Nov 2019
Building Calibrated Deep Models via Uncertainty Matching with Auxiliary Interval Predictors
Jayaraman J. Thiagarajan
Bindya Venkatesh
P. Sattigeri
P. Bremer
UQCV
56
31
0
09 Sep 2019
Stochastic Latent Actor-Critic: Deep Reinforcement Learning with a Latent Variable Model
Alex X. Lee
Anusha Nagabandi
Pieter Abbeel
Sergey Levine
OffRL
BDL
85
382
0
01 Jul 2019
Neural Stochastic Differential Equations: Deep Latent Gaussian Models in the Diffusion Limit
Belinda Tzen
Maxim Raginsky
DiffM
166
210
0
23 May 2019
Augmented Neural ODEs
Emilien Dupont
Arnaud Doucet
Yee Whye Teh
BDL
152
632
0
02 Apr 2019
AReS and MaRS - Adversarial and MMD-Minimizing Regression for SDEs
G. Abbati
Philippe Wenk
Michael A. Osborne
Andreas Krause
Bernhard Schölkopf
Stefan Bauer
DiffM
41
15
0
22 Feb 2019
Deep learning with differential Gaussian process flows
Pashupati Hegde
Markus Heinonen
Harri Lähdesmäki
Samuel Kaski
BDL
63
42
0
09 Oct 2018
Accurate Uncertainties for Deep Learning Using Calibrated Regression
Volodymyr Kuleshov
Nathan Fenner
Stefano Ermon
BDL
UQCV
201
636
0
01 Jul 2018
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
434
5,157
0
19 Jun 2018
Bayesian Inference for Diffusion Processes: Using Higher-Order Approximations for Transition Densities
Susanne Pieschner
Christiane Fuchs
22
6
0
06 Jun 2018
Black-box Variational Inference for Stochastic Differential Equations
Tom Ryder
Andrew Golightly
A. Mcgough
D. Prangle
69
58
0
09 Feb 2018
On Calibration of Modern Neural Networks
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
299
5,862
0
14 Jun 2017
Doubly Stochastic Variational Inference for Deep Gaussian Processes
Hugh Salimbeni
M. Deisenroth
BDL
GP
91
422
0
24 May 2017
Variational Dropout and the Local Reparameterization Trick
Diederik P. Kingma
Tim Salimans
Max Welling
BDL
226
1,517
0
08 Jun 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
852
9,346
0
06 Jun 2015
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks
José Miguel Hernández-Lobato
Ryan P. Adams
UQCV
BDL
142
945
0
18 Feb 2015
Efficient Estimation of Mutual Information for Strongly Dependent Variables
Shuyang Gao
Greg Ver Steeg
Aram Galstyan
87
199
0
07 Nov 2014
1