ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.08877
  4. Cited By
Practical Quasi-Newton Methods for Training Deep Neural Networks

Practical Quasi-Newton Methods for Training Deep Neural Networks

16 June 2020
D. Goldfarb
Yi Ren
Achraf Bahamou
    ODL
ArXivPDFHTML

Papers citing "Practical Quasi-Newton Methods for Training Deep Neural Networks"

20 / 20 papers shown
Title
Striving for Simplicity: Simple Yet Effective Prior-Aware Pseudo-Labeling for Semi-Supervised Ultrasound Image Segmentation
Striving for Simplicity: Simple Yet Effective Prior-Aware Pseudo-Labeling for Semi-Supervised Ultrasound Image Segmentation
Yaxiong Chen
Yujie Wang
Zixuan Zheng
Jingliang Hu
Yilei Shi
Shengwu Xiong
Xiao Xiang Zhu
Lichao Mou
54
0
0
18 Mar 2025
Learning rheological parameters of non-Newtonian fluids from velocimetry data
Learning rheological parameters of non-Newtonian fluids from velocimetry data
Alexandros Kontogiannis
Richard Hodgkinson
E. L. Manchester
16
0
0
05 Aug 2024
An Improved Empirical Fisher Approximation for Natural Gradient Descent
An Improved Empirical Fisher Approximation for Natural Gradient Descent
Xiaodong Wu
Wenyi Yu
Chao Zhang
Philip Woodland
29
3
0
10 Jun 2024
Q-Newton: Hybrid Quantum-Classical Scheduling for Accelerating Neural Network Training with Newton's Gradient Descent
Q-Newton: Hybrid Quantum-Classical Scheduling for Accelerating Neural Network Training with Newton's Gradient Descent
Pingzhi Li
Junyu Liu
Hanrui Wang
Tianlong Chen
94
1
0
30 Apr 2024
Eva: A General Vectorized Approximation Framework for Second-order
  Optimization
Eva: A General Vectorized Approximation Framework for Second-order Optimization
Lin Zhang
S. Shi
Bo-wen Li
28
1
0
04 Aug 2023
KrADagrad: Kronecker Approximation-Domination Gradient Preconditioned
  Stochastic Optimization
KrADagrad: Kronecker Approximation-Domination Gradient Preconditioned Stochastic Optimization
Jonathan Mei
Alexander Moreno
Luke Walters
ODL
29
1
0
30 May 2023
Layer-wise Adaptive Step-Sizes for Stochastic First-Order Methods for Deep Learning
Achraf Bahamou
D. Goldfarb
ODL
36
0
0
23 May 2023
ASDL: A Unified Interface for Gradient Preconditioning in PyTorch
ASDL: A Unified Interface for Gradient Preconditioning in PyTorch
Kazuki Osawa
Satoki Ishikawa
Rio Yokota
Shigang Li
Torsten Hoefler
ODL
46
14
0
08 May 2023
ISAAC Newton: Input-based Approximate Curvature for Newton's Method
ISAAC Newton: Input-based Approximate Curvature for Newton's Method
Felix Petersen
Tobias Sutter
Christian Borgelt
Dongsung Huh
Hilde Kuehne
Yuekai Sun
Oliver Deussen
ODL
36
5
0
01 May 2023
FOSI: Hybrid First and Second Order Optimization
FOSI: Hybrid First and Second Order Optimization
Hadar Sivan
Moshe Gabel
Assaf Schuster
ODL
34
2
0
16 Feb 2023
An Efficient Nonlinear Acceleration method that Exploits Symmetry of the
  Hessian
An Efficient Nonlinear Acceleration method that Exploits Symmetry of the Hessian
Huan He
Shifan Zhao
Z. Tang
Joyce C. Ho
Y. Saad
Yuanzhe Xi
32
3
0
22 Oct 2022
Rethinking Exponential Averaging of the Fisher
Rethinking Exponential Averaging of the Fisher
C. Puiu
23
1
0
10 Apr 2022
Gradient Descent on Neurons and its Link to Approximate Second-Order
  Optimization
Gradient Descent on Neurons and its Link to Approximate Second-Order Optimization
Frederik Benzing
ODL
43
23
0
28 Jan 2022
Large-Scale Deep Learning Optimizations: A Comprehensive Survey
Large-Scale Deep Learning Optimizations: A Comprehensive Survey
Xiaoxin He
Fuzhao Xue
Xiaozhe Ren
Yang You
30
14
0
01 Nov 2021
Accelerating Distributed K-FAC with Smart Parallelism of Computing and
  Communication Tasks
Accelerating Distributed K-FAC with Smart Parallelism of Computing and Communication Tasks
S. Shi
Lin Zhang
Bo-wen Li
40
9
0
14 Jul 2021
KOALA: A Kalman Optimization Algorithm with Loss Adaptivity
KOALA: A Kalman Optimization Algorithm with Loss Adaptivity
A. Davtyan
Sepehr Sameni
L. Cerkezi
Givi Meishvili
Adam Bielski
Paolo Favaro
ODL
55
2
0
07 Jul 2021
NG+ : A Multi-Step Matrix-Product Natural Gradient Method for Deep
  Learning
NG+ : A Multi-Step Matrix-Product Natural Gradient Method for Deep Learning
Minghan Yang
Dong Xu
Qiwen Cui
Zaiwen Wen
Pengxiang Xu
18
4
0
14 Jun 2021
TENGraD: Time-Efficient Natural Gradient Descent with Exact Fisher-Block
  Inversion
TENGraD: Time-Efficient Natural Gradient Descent with Exact Fisher-Block Inversion
Saeed Soori
Bugra Can
Baourun Mu
Mert Gurbuzbalaban
M. Dehnavi
24
10
0
07 Jun 2021
A Trace-restricted Kronecker-Factored Approximation to Natural Gradient
A Trace-restricted Kronecker-Factored Approximation to Natural Gradient
Kai-Xin Gao
Xiaolei Liu
Zheng-Hai Huang
Min Wang
Zidong Wang
Dachuan Xu
F. Yu
24
11
0
21 Nov 2020
Descending through a Crowded Valley - Benchmarking Deep Learning
  Optimizers
Descending through a Crowded Valley - Benchmarking Deep Learning Optimizers
Robin M. Schmidt
Frank Schneider
Philipp Hennig
ODL
40
162
0
03 Jul 2020
1