Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.08877
Cited By
Practical Quasi-Newton Methods for Training Deep Neural Networks
16 June 2020
D. Goldfarb
Yi Ren
Achraf Bahamou
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Practical Quasi-Newton Methods for Training Deep Neural Networks"
20 / 20 papers shown
Title
Striving for Simplicity: Simple Yet Effective Prior-Aware Pseudo-Labeling for Semi-Supervised Ultrasound Image Segmentation
Yaxiong Chen
Yujie Wang
Zixuan Zheng
Jingliang Hu
Yilei Shi
Shengwu Xiong
Xiao Xiang Zhu
Lichao Mou
54
0
0
18 Mar 2025
Learning rheological parameters of non-Newtonian fluids from velocimetry data
Alexandros Kontogiannis
Richard Hodgkinson
E. L. Manchester
16
0
0
05 Aug 2024
An Improved Empirical Fisher Approximation for Natural Gradient Descent
Xiaodong Wu
Wenyi Yu
Chao Zhang
Philip Woodland
29
3
0
10 Jun 2024
Q-Newton: Hybrid Quantum-Classical Scheduling for Accelerating Neural Network Training with Newton's Gradient Descent
Pingzhi Li
Junyu Liu
Hanrui Wang
Tianlong Chen
94
1
0
30 Apr 2024
Eva: A General Vectorized Approximation Framework for Second-order Optimization
Lin Zhang
S. Shi
Bo-wen Li
28
1
0
04 Aug 2023
KrADagrad: Kronecker Approximation-Domination Gradient Preconditioned Stochastic Optimization
Jonathan Mei
Alexander Moreno
Luke Walters
ODL
29
1
0
30 May 2023
Layer-wise Adaptive Step-Sizes for Stochastic First-Order Methods for Deep Learning
Achraf Bahamou
D. Goldfarb
ODL
36
0
0
23 May 2023
ASDL: A Unified Interface for Gradient Preconditioning in PyTorch
Kazuki Osawa
Satoki Ishikawa
Rio Yokota
Shigang Li
Torsten Hoefler
ODL
46
14
0
08 May 2023
ISAAC Newton: Input-based Approximate Curvature for Newton's Method
Felix Petersen
Tobias Sutter
Christian Borgelt
Dongsung Huh
Hilde Kuehne
Yuekai Sun
Oliver Deussen
ODL
36
5
0
01 May 2023
FOSI: Hybrid First and Second Order Optimization
Hadar Sivan
Moshe Gabel
Assaf Schuster
ODL
34
2
0
16 Feb 2023
An Efficient Nonlinear Acceleration method that Exploits Symmetry of the Hessian
Huan He
Shifan Zhao
Z. Tang
Joyce C. Ho
Y. Saad
Yuanzhe Xi
32
3
0
22 Oct 2022
Rethinking Exponential Averaging of the Fisher
C. Puiu
23
1
0
10 Apr 2022
Gradient Descent on Neurons and its Link to Approximate Second-Order Optimization
Frederik Benzing
ODL
43
23
0
28 Jan 2022
Large-Scale Deep Learning Optimizations: A Comprehensive Survey
Xiaoxin He
Fuzhao Xue
Xiaozhe Ren
Yang You
30
14
0
01 Nov 2021
Accelerating Distributed K-FAC with Smart Parallelism of Computing and Communication Tasks
S. Shi
Lin Zhang
Bo-wen Li
40
9
0
14 Jul 2021
KOALA: A Kalman Optimization Algorithm with Loss Adaptivity
A. Davtyan
Sepehr Sameni
L. Cerkezi
Givi Meishvili
Adam Bielski
Paolo Favaro
ODL
55
2
0
07 Jul 2021
NG+ : A Multi-Step Matrix-Product Natural Gradient Method for Deep Learning
Minghan Yang
Dong Xu
Qiwen Cui
Zaiwen Wen
Pengxiang Xu
18
4
0
14 Jun 2021
TENGraD: Time-Efficient Natural Gradient Descent with Exact Fisher-Block Inversion
Saeed Soori
Bugra Can
Baourun Mu
Mert Gurbuzbalaban
M. Dehnavi
24
10
0
07 Jun 2021
A Trace-restricted Kronecker-Factored Approximation to Natural Gradient
Kai-Xin Gao
Xiaolei Liu
Zheng-Hai Huang
Min Wang
Zidong Wang
Dachuan Xu
F. Yu
24
11
0
21 Nov 2020
Descending through a Crowded Valley - Benchmarking Deep Learning Optimizers
Robin M. Schmidt
Frank Schneider
Philipp Hennig
ODL
40
162
0
03 Jul 2020
1