Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.08669
Cited By
On Adversarial Bias and the Robustness of Fair Machine Learning
15 June 2020
Hong Chang
Ta Duy Nguyen
S. K. Murakonda
Ehsan Kazemi
Reza Shokri
FaML
OOD
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On Adversarial Bias and the Robustness of Fair Machine Learning"
11 / 11 papers shown
Title
Do Fairness Interventions Come at the Cost of Privacy: Evaluations for Binary Classifiers
Huan Tian
Guangsheng Zhang
Bo Liu
Tianqing Zhu
Ming Ding
Wanlei Zhou
53
0
0
08 Mar 2025
Adversarial Attacks on Fairness of Graph Neural Networks
Binchi Zhang
Yushun Dong
Chen Chen
Yada Zhu
Minnan Luo
Jundong Li
41
3
0
20 Oct 2023
Measuring Equality in Machine Learning Security Defenses: A Case Study in Speech Recognition
Luke E. Richards
Edward Raff
Cynthia Matuszek
AAML
16
2
0
17 Feb 2023
Fairness-aware Regression Robust to Adversarial Attacks
Yulu Jin
Lifeng Lai
FaML
OOD
29
4
0
04 Nov 2022
Subverting Fair Image Search with Generative Adversarial Perturbations
A. Ghosh
Matthew Jagielski
Chris L. Wilson
22
7
0
05 May 2022
Sample Selection for Fair and Robust Training
Yuji Roh
Kangwook Lee
Steven Euijong Whang
Changho Suh
21
61
0
27 Oct 2021
Improving Robustness using Generated Data
Sven Gowal
Sylvestre-Alvise Rebuffi
Olivia Wiles
Florian Stimberg
D. A. Calian
Timothy A. Mann
36
293
0
18 Oct 2021
Technical Challenges for Training Fair Neural Networks
Valeriia Cherepanova
V. Nanda
Micah Goldblum
John P. Dickerson
Tom Goldstein
FaML
17
22
0
12 Feb 2021
Subpopulation Data Poisoning Attacks
Matthew Jagielski
Giorgio Severi
Niklas Pousette Harger
Alina Oprea
AAML
SILM
21
112
0
24 Jun 2020
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
323
4,212
0
23 Aug 2019
Learning Adversarially Fair and Transferable Representations
David Madras
Elliot Creager
T. Pitassi
R. Zemel
FaML
233
674
0
17 Feb 2018
1