ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.08476
  4. Cited By
Improving Adversarial Robustness via Unlabeled Out-of-Domain Data

Improving Adversarial Robustness via Unlabeled Out-of-Domain Data

15 June 2020
Zhun Deng
Linjun Zhang
Amirata Ghorbani
James Zou
ArXivPDFHTML

Papers citing "Improving Adversarial Robustness via Unlabeled Out-of-Domain Data"

10 / 10 papers shown
Title
Better Representations via Adversarial Training in Pre-Training: A
  Theoretical Perspective
Better Representations via Adversarial Training in Pre-Training: A Theoretical Perspective
Yue Xing
Xiaofeng Lin
Qifan Song
Yi Tian Xu
Belinda Zeng
Guang Cheng
SSL
28
0
0
26 Jan 2024
Robust Ranking Explanations
Robust Ranking Explanations
Chao Chen
Chenghua Guo
Guixiang Ma
Ming Zeng
Xi Zhang
Sihong Xie
FAtt
AAML
37
0
0
08 Jul 2023
Federated Learning without Full Labels: A Survey
Federated Learning without Full Labels: A Survey
Yilun Jin
Yang Liu
Kai Chen
Qian Yang
FedML
17
26
0
25 Mar 2023
Reinforcement Learning with Stepwise Fairness Constraints
Reinforcement Learning with Stepwise Fairness Constraints
Zhun Deng
He Sun
Zhiwei Steven Wu
Linjun Zhang
David C. Parkes
FaML
OffRL
43
11
0
08 Nov 2022
GeoECG: Data Augmentation via Wasserstein Geodesic Perturbation for
  Robust Electrocardiogram Prediction
GeoECG: Data Augmentation via Wasserstein Geodesic Perturbation for Robust Electrocardiogram Prediction
Jiacheng Zhu
Jielin Qiu
Zhuolin Yang
Douglas Weber
M. Rosenberg
Emerson Liu
Bo-wen Li
Ding Zhao
OOD
33
13
0
02 Aug 2022
FIFA: Making Fairness More Generalizable in Classifiers Trained on
  Imbalanced Data
FIFA: Making Fairness More Generalizable in Classifiers Trained on Imbalanced Data
Zhun Deng
Jiayao Zhang
Linjun Zhang
Ting Ye
Yates Coley
Weijie J. Su
James Zou
43
16
0
06 Jun 2022
Adversarial Training Helps Transfer Learning via Better Representations
Adversarial Training Helps Transfer Learning via Better Representations
Zhun Deng
Linjun Zhang
Kailas Vodrahalli
Kenji Kawaguchi
James Zou
GAN
36
53
0
18 Jun 2021
When and How Mixup Improves Calibration
When and How Mixup Improves Calibration
Linjun Zhang
Zhun Deng
Kenji Kawaguchi
James Zou
UQCV
36
67
0
11 Feb 2021
Adversarial examples from computational constraints
Adversarial examples from computational constraints
Sébastien Bubeck
Eric Price
Ilya P. Razenshteyn
AAML
65
230
0
25 May 2018
Adversarial Machine Learning at Scale
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
296
3,113
0
04 Nov 2016
1