Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.08476
Cited By
Improving Adversarial Robustness via Unlabeled Out-of-Domain Data
15 June 2020
Zhun Deng
Linjun Zhang
Amirata Ghorbani
James Zou
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Improving Adversarial Robustness via Unlabeled Out-of-Domain Data"
10 / 10 papers shown
Title
Better Representations via Adversarial Training in Pre-Training: A Theoretical Perspective
Yue Xing
Xiaofeng Lin
Qifan Song
Yi Tian Xu
Belinda Zeng
Guang Cheng
SSL
28
0
0
26 Jan 2024
Robust Ranking Explanations
Chao Chen
Chenghua Guo
Guixiang Ma
Ming Zeng
Xi Zhang
Sihong Xie
FAtt
AAML
37
0
0
08 Jul 2023
Federated Learning without Full Labels: A Survey
Yilun Jin
Yang Liu
Kai Chen
Qian Yang
FedML
17
26
0
25 Mar 2023
Reinforcement Learning with Stepwise Fairness Constraints
Zhun Deng
He Sun
Zhiwei Steven Wu
Linjun Zhang
David C. Parkes
FaML
OffRL
43
11
0
08 Nov 2022
GeoECG: Data Augmentation via Wasserstein Geodesic Perturbation for Robust Electrocardiogram Prediction
Jiacheng Zhu
Jielin Qiu
Zhuolin Yang
Douglas Weber
M. Rosenberg
Emerson Liu
Bo-wen Li
Ding Zhao
OOD
33
13
0
02 Aug 2022
FIFA: Making Fairness More Generalizable in Classifiers Trained on Imbalanced Data
Zhun Deng
Jiayao Zhang
Linjun Zhang
Ting Ye
Yates Coley
Weijie J. Su
James Zou
43
16
0
06 Jun 2022
Adversarial Training Helps Transfer Learning via Better Representations
Zhun Deng
Linjun Zhang
Kailas Vodrahalli
Kenji Kawaguchi
James Zou
GAN
36
53
0
18 Jun 2021
When and How Mixup Improves Calibration
Linjun Zhang
Zhun Deng
Kenji Kawaguchi
James Zou
UQCV
36
67
0
11 Feb 2021
Adversarial examples from computational constraints
Sébastien Bubeck
Eric Price
Ilya P. Razenshteyn
AAML
65
230
0
25 May 2018
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
296
3,113
0
04 Nov 2016
1