ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.07721
  4. Cited By
Beyond Random Matrix Theory for Deep Networks

Beyond Random Matrix Theory for Deep Networks

13 June 2020
Diego Granziol
ArXivPDFHTML

Papers citing "Beyond Random Matrix Theory for Deep Networks"

5 / 5 papers shown
Title
Universal characteristics of deep neural network loss surfaces from
  random matrix theory
Universal characteristics of deep neural network loss surfaces from random matrix theory
Nicholas P. Baskerville
J. Keating
F. Mezzadri
J. Najnudel
Diego Granziol
22
4
0
17 May 2022
Impact of classification difficulty on the weight matrices spectra in
  Deep Learning and application to early-stopping
Impact of classification difficulty on the weight matrices spectra in Deep Learning and application to early-stopping
Xuran Meng
Jianfeng Yao
19
7
0
26 Nov 2021
Appearance of Random Matrix Theory in Deep Learning
Appearance of Random Matrix Theory in Deep Learning
Nicholas P. Baskerville
Diego Granziol
J. Keating
15
11
0
12 Feb 2021
Cleaning large correlation matrices: tools from random matrix theory
Cleaning large correlation matrices: tools from random matrix theory
J. Bun
J. Bouchaud
M. Potters
32
262
0
25 Oct 2016
The Loss Surfaces of Multilayer Networks
The Loss Surfaces of Multilayer Networks
A. Choromańska
Mikael Henaff
Michaël Mathieu
Gerard Ben Arous
Yann LeCun
ODL
179
1,185
0
30 Nov 2014
1